def __init__(self): """ """ super().__init__() self.bpoints = None self.md = nested_dict() self.log = get_logger("Benchmark") self.set_cluster_column()
def __init__(self): """Initializes the :class:`clusterking.scan.Scanner` class.""" super().__init__() # todo: move self.log = get_logger("Scanner") #: Points in wilson space #: Use self.spoints to access this self._spoints = None # type: Optional[np.ndarray] #: Instance of SpointCalculator to perform the claculations of #: the wilson space points. self._spoint_calculator = SpointCalculator() # todo: move self.md = nested_dict() self.md["git"] = version_info(self.log) self.md["time"] = time.strftime("%a %d %b %Y %H:%M", time.gmtime()) # todo: shouldn't that be in metadata? #: Names of the parameters self._coeffs = [] # type: List[str] self._no_workers = None # type: Optional[int] self._progress_bar = True self._tqdm_kwargs = {} self.set_imaginary_prefix("im_")
def __init__(self): """ Args: data: :py:class:`~clusterking.data.Data` object """ super().__init__() self.log = get_logger("Scanner") self.clusters = None # self.bpoints = None #: Metadata self.md = nested_dict() self.md["git"] = version_info(self.log) self.md["time"] = time.strftime("%a %d %b %Y %H:%M", time.gmtime())
def __init__( self, path: Optional[Union[str, PurePath]] = None, log: Optional[Union[str, logging.Logger]] = None, ): """ Initialize a DFMD object. Args: path: Optional: load from this file (specified as string or :class:`pathlib.PurePath`) log: Optional: instance of :py:class:`logging.Logger` or name of logger to be created """ # These are the three attributes of this class #: This will hold all the configuration that we will write out self.md = None #: :py:class:`pandas.DataFrame` to hold all of the results self.df = None # type: Optional[pd.DataFrame] #: Instance of :py:class:`logging.Logger` self.log = None # todo: remember path? if not path: # Initialize blank self.md = nested_dict() self.df = pd.DataFrame() self.log = None else: self._load(path) # Overwrite log if user wants that. if isinstance(log, logging.Logger): self.log = log elif isinstance(log, str): self.log = get_logger(log) elif log is None: if not self.log: self.log = get_logger("DFMD") else: raise ValueError( "Unsupported type '{}' for 'log' argument.".format(type(log)))
def test_nested_dict(self): nd = metadata.nested_dict() nd[1][2][3] = None self.assertEqual(nd, {1: {2: {3: None}}})
def __init__(self): super().__init__() self._kmeans_kwargs = {} self.md = nested_dict()