def testEquals(self): a = clusters.bicluster([1, 2, 3]) b = clusters.bicluster([1, 2, 3]) self.assertEquals(a, b) self.assertFalse(a != b) self.assertEquals(clusters.bicluster([], left=a), clusters.bicluster([], left=b)) self.assertEquals(clusters.bicluster([], right=a), clusters.bicluster([], right=b)) self.assertEquals(clusters.bicluster([], distance=2.5), clusters.bicluster([], distance=2.5)) self.assertEquals(clusters.bicluster([], id=5), clusters.bicluster([], id=5))
def testNormal(self): rows = [[6, 4, 2], [2, 4, 6], [1, 2, 3], [3, 2, 1.01]] clust = [clusters.bicluster(rows[i], id=i) for i in range(len(rows))] c0 = clusters.bicluster(clusters.mergevecs(rows[1], rows[2]), left=clust[1], right=clust[2], id=-1, distance=0.0) c1 = clusters.bicluster(clusters.mergevecs(rows[0], rows[3]), left=clust[0], right=clust[3], id=-2, distance=clusters.pearson_dist(rows[0], rows[3])) c2 = clusters.bicluster(clusters.mergevecs(c0.vec, c1.vec), left=c0, right=c1, id=-3, distance=clusters.pearson_dist(c0.vec, c1.vec)) self.assertEquals(c2, clusters.hcluster(rows))
def testNormal(self): rows = [[6, 4, 2], [2, 4, 6], [1, 2, 3], [3, 2, 1.01]] clust = [clusters.bicluster(rows[i], id=i) for i in range(len(rows))] c0 = clusters.bicluster(clusters.mergevecs(rows[1], rows[2]), left=clust[1], right=clust[2], id=-1, distance=0.0) c1 = clusters.bicluster(clusters.mergevecs(rows[0], rows[3]), left=clust[0], right=clust[3], id=-2, distance=clusters.pearson_dist( rows[0], rows[3])) c2 = clusters.bicluster(clusters.mergevecs(c0.vec, c1.vec), left=c0, right=c1, id=-3, distance=clusters.pearson_dist(c0.vec, c1.vec)) self.assertEquals(c2, clusters.hcluster(rows))