예제 #1
0
        help=
        " <optional>, it defines the checkpoint for training<fine tuning> or testing",
        required=False)
    parser.add_argument(
        "-image",
        type=str,
        help=
        " <optional>, a filename for an image to be tested in -predict mode-",
        required=False)

    pargs = parser.parse_args()
    if pargs.config != None:
        configuration_file = pargs.config
    else:
        configuration_file = _params.configuration_file
    configuration = conf.ConfigurationFile(configuration_file, pargs.name)
    configuration.show()
    # it is also possible to define the id of the device
    if pargs.device is None:
        device_name = "/cpu:0"
    else:
        device_name = "/" + pargs.device + ":0"
    params = {'device': device_name, 'modelname': pargs.name}
    if pargs.ckpt is not None:
        params['ckpt'] = pargs.ckpt
    my_cnn = cnn.CNN(configuration_file, params)
    run_mode = pargs.mode
    if run_mode == 'train':
        my_cnn.train()
    elif run_mode == 'test':
        my_cnn.test()
예제 #2
0
def loadMapping(mapping_file):
    map_dict = {}
    with open(mapping_file) as file:
        lines = [line.rstrip() for line in file]
        for line in lines:
            sline = line.split('\t')
            map_dict[int(sline[1])] = sline[0]
    return map_dict


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="signature recognition")
    parser.add_argument("-image", type=str, help="check image", required=True)
    input_arg = parser.parse_args()
    configuration_file = "configuration.config"
    configuration = conf.ConfigurationFile(configuration_file,
                                           "SIMPLE-SIGNATURE-CNN")
    #loading cnn model
    _params = {
        "device": "/cpu:0",
        "arch": "SIMPLE-SIGNATURE-CNN",
        "processFun": imgproc.getProcessFun()
    }
    sign_cnn = cnn.CNN(configuration_file, _params)
    filename = input_arg.image
    image = io.imread(filename, as_gray=True)
    sign_image = sutils.extractSignature(image)
    #cv2.imshow("sign", sign_image)
    #cv2.waitKey()
    prediction = sign_cnn.predict(sign_image)[0]
    idx_class = prediction['idx_predicted_class']