from pyspark import SparkContext if __name__ == "__main__": # if len(sys.argv) != 5: # print >> sys.stderr, "Usage: cnnspark <modelpath> <imgpath> <divsize> <partitions>" # exit(-1) sc = SparkContext(appName="cnnspark", pyFiles=['cnnpredict.py', 'cnnparsemodel.py']) # model = cnnparsemodel.load_matcnn(sys.argv[1]) # img0 = misc.imread(sys.argv[2]) # divsize = int(sys.argv[3]) # partitions = int(sys.argv[4]) model = cnnparsemodel.load_matcnn('muscle-caffe-20.mat') img0 = misc.imread('test.jpg') divsize = 200 partitions = [8, 16] # pad image padsz = cnnpredict.pad_size(model) img = cnnpredict.pad_img(img0, padsz) H, W, Channels = img.shape hDivs, wDivs = int(np.floor(H / divsize)), int(np.floor(W / divsize)) divs = [] for ih in range(hDivs): for iw in range(wDivs): divs.append((ih, iw)) timeused = []
if __name__ == "__main__": # if len(sys.argv) != 5: # print >> sys.stderr, "Usage: cnnspark <modelpath> <imgpath> <divsize> <partitions>" # exit(-1) sc = SparkContext(appName = "cnnspark", pyFiles=['cnnpredict.py', 'cnnparsemodel.py']) # model = cnnparsemodel.load_matcnn(sys.argv[1]) # img0 = misc.imread(sys.argv[2]) # divsize = int(sys.argv[3]) # partitions = int(sys.argv[4]) model = cnnparsemodel.load_matcnn('muscle-caffe-20.mat') img0 = misc.imread('test.jpg') divsizes = [600, 500, 400, 300, 200, 100] #partitions = [1, 2, 4, 8, 16] # pad image padsz = cnnpredict.pad_size(model) img = cnnpredict.pad_img(img0, padsz) H, W, Channels = img.shape timeused = [] numDivs = [] for divsize in divsizes: hDivs, wDivs = int(np.floor(H/divsize)), int(np.floor(W/divsize))
import cnnparsemodel import matplotlib.pyplot as plt from datetime import datetime from scipy import misc from pyspark import SparkContext if __name__ == "__main__": if len(sys.argv) != 5: print >> sys.stderr, "Usage: cnnspark <modelpath> <imgpath> <divsize> <partitions>" exit(-1) sc = SparkContext(appName="cnnspark", pyFiles=['cnnpredict.py', 'cnnparsemodel.py']) model = cnnparsemodel.load_matcnn(sys.argv[1]) img0 = misc.imread(sys.argv[2]) divsize = int(sys.argv[3]) partitions = int(sys.argv[4]) # model = cnnparsemodel.load_matcnn('muscle-caffe-20.mat') # img0 = misc.imread('test.jpg') # divsize = 200 # partitions = 20 # pad image padsz = cnnpredict.pad_size(model) img = cnnpredict.pad_img(img0, padsz) H, W, Channels = img.shape hDivs, wDivs = int(np.floor(H / divsize)), int(np.floor(W / divsize)) divs = []
import matplotlib.pyplot as plt from datetime import datetime from scipy import misc from pyspark import SparkContext if __name__ == "__main__": if len(sys.argv) != 5: print >> sys.stderr, "Usage: cnnspark <modelpath> <imgpath> <divsize> <partitions>" exit(-1) sc = SparkContext(appName = "cnnspark", pyFiles=['cnnpredict.py', 'cnnparsemodel.py']) model = cnnparsemodel.load_matcnn(sys.argv[1]) img0 = misc.imread(sys.argv[2]) divsize = int(sys.argv[3]) partitions = int(sys.argv[4]) # model = cnnparsemodel.load_matcnn('muscle-caffe-20.mat') # img0 = misc.imread('test.jpg') # divsize = 200 # partitions = 20 # pad image padsz = cnnpredict.pad_size(model) img = cnnpredict.pad_img(img0, padsz) H, W, Channels = img.shape hDivs, wDivs = int(np.floor(H/divsize)), int(np.floor(W/divsize)) divs = []