예제 #1
0
파일: __init__.py 프로젝트: itoupeter/CNTK
def softmax(x, name = ''):
  """
  Compute softmax along with a squence values
  """
  from ...ops import element_divide, exp 
  x_exp = exp((x-broadcast_as(reduce_max(x), x))*10)
  x_softmax = element_divide(x_exp, broadcast_as(reduce_sum(x_exp), x), name = name)
  return x_softmax
예제 #2
0
def broadcast_as(operand, broadcast_as_operand, name=''):
    '''
    Creates a sequence out of a non-sequence by endowing the `operand` 
    with dynamic axes of the same type as the `broadcast_as_operand`
    and broadcasting the value of the `operand` along those dynamic axes.

    Example:
        >>> import cntk.ops as C
        >>> import numpy as np
        >>> x = C.input_variable(shape=(3,2))
        >>> t = C.sequence.last(x)
        >>> b = C.sequence.is_first(x)
        >>> y = C.sequence.broadcast_as(t, b)
        >>> x0 = np.reshape(np.arange(24.0,dtype=np.float32),(4,3,2))
        >>> y.eval({x:x0})
        array([[[[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]]]], dtype=float32)

    Args:        
        operand: the symbolic tensor whose value will be broadcast
        broadcast_as_operand: the symbolic tensor whose dynamic axes will 
            be used to broadcast the operand
        name (str): the name of the node in the network

    Returns:
        :class:`cntk.Function`
    '''
    from cntk.cntk_py import broadcast_as
    operand = sanitize_input(operand, get_data_type(operand))
    broadcast_as_operand = sanitize_input(
        broadcast_as_operand, get_data_type(broadcast_as_operand))
    return broadcast_as(operand, broadcast_as_operand, name)
예제 #3
0
def broadcast_as(operand, broadcast_as_operand, name=''):
    '''
    Creates a sequence out of a non-sequence by endowing the ``operand``
    with dynamic axes of the same type as the ``broadcast_as_operand``
    and broadcasting the value of the ``operand`` along those dynamic axes.

    Example:
        >>> import cntk.ops as C
        >>> import numpy as np
        >>> x = C.input_variable(shape=(3,2))
        >>> t = C.sequence.last(x)
        >>> b = C.sequence.is_first(x)
        >>> y = C.sequence.broadcast_as(t, b)
        >>> x0 = np.reshape(np.arange(24.0,dtype=np.float32),(4,3,2))
        >>> y.eval({x:x0})
        array([[[[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]],
        <BLANKLINE>
                [[ 18.,  19.],
                 [ 20.,  21.],
                 [ 22.,  23.]]]], dtype=float32)

    Args:
        operand: the symbolic tensor whose value will be broadcast
        broadcast_as_operand: the symbolic tensor whose dynamic axes will
            be used to broadcast the operand
        name (str): the name of the node in the network

    Returns:
        :class:`cntk.Function`
    '''
    from cntk.cntk_py import broadcast_as
    operand = sanitize_input(operand, get_data_type(operand))
    broadcast_as_operand = sanitize_input(
        broadcast_as_operand, get_data_type(broadcast_as_operand))
    return broadcast_as(operand, broadcast_as_operand, name)
예제 #4
0
파일: __init__.py 프로젝트: hahatt/CNTK
def broadcast_as(operand, broadcast_as_operand, name=''):
    '''
    TBA

    Example:
        TBA
    Args:        
        operand: the symbolic tensor operand denoting a tensor
        broadcast_as_operand: the symbolic tensor operand denoting a sequence per whose layout the main operand id to be broadcast
        name (str): the name of the node in the network
    Returns:
        :class:`cntk.Function`
    '''
    from cntk.cntk_py import broadcast_as
    operand = sanitize_input(operand, get_data_type(operand))
    broadcast_as_operand = sanitize_input(
        broadcast_as_operand, get_data_type(broadcast_as_operand))
    return broadcast_as(operand, broadcast_as_operand, name)
예제 #5
0
def broadcast_as(operand, broadcast_as_operand, name=''):
    '''
    TBA
        
    Example:
        TBA
    Args:        
        operand: the symbolic tensor operand denoting a tensor
        broadcast_as_operand: the symbolic tensor operand denoting a sequence per whose layout the main operand id to be broadcast
        name (str): the name of the node in the network
    Returns:
        :class:`cntk.Function`
    '''
    from cntk.cntk_py import broadcast_as
    operand = sanitize_input(operand, get_data_type(operand))
    broadcast_as_operand = sanitize_input(broadcast_as_operand,
                                          get_data_type(broadcast_as_operand))
    return broadcast_as(operand, broadcast_as_operand, name)