예제 #1
0
def create_alexnet():

    # Input variables denoting the features and label data
    feature_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # apply model to input
    # remove mean value
    input = minus(feature_var, constant(114), name='mean_removed_input')

    with default_options(activation=None, pad=True, bias=True):
        z = Sequential([
            # we separate Convolution and ReLU to name the output for feature extraction (usually before ReLU)
            Convolution2D((11,11), 96, init=normal(0.01), pad=False, strides=(4,4), name='conv1'),
            Activation(activation=relu, name='relu1'),
            LocalResponseNormalization(1.0, 2, 0.0001, 0.75, name='norm1'),
            MaxPooling((3,3), (2,2), name='pool1'),

            Convolution2D((5,5), 192, init=normal(0.01), init_bias=0.1, name='conv2'),
            Activation(activation=relu, name='relu2'),
            LocalResponseNormalization(1.0, 2, 0.0001, 0.75, name='norm2'),
            MaxPooling((3,3), (2,2), name='pool2'),

            Convolution2D((3,3), 384, init=normal(0.01), name='conv3'),
            Activation(activation=relu, name='relu3'),
            Convolution2D((3,3), 384, init=normal(0.01), init_bias=0.1, name='conv4'),
            Activation(activation=relu, name='relu4'),
            Convolution2D((3,3), 256, init=normal(0.01), init_bias=0.1, name='conv5'),
            Activation(activation=relu, name='relu5'),
            MaxPooling((3,3), (2,2), name='pool5'),

            Dense(4096, init=normal(0.005), init_bias=0.1, name='fc6'),
            Activation(activation=relu, name='relu6'),
            Dropout(0.5, name='drop6'),
            Dense(4096, init=normal(0.005), init_bias=0.1, name='fc7'),
            Activation(activation=relu, name='relu7'),
            Dropout(0.5, name='drop7'),
            Dense(num_classes, init=normal(0.01), name='fc8')
            ])(input)

    # loss and metric
    ce  = cross_entropy_with_softmax(z, label_var)
    pe  = classification_error(z, label_var)
    pe5 = classification_error(z, label_var, topN=5)

    log_number_of_parameters(z) ; print()

    return {
        'feature': feature_var,
        'label': label_var,
        'ce' : ce,
        'pe' : pe,
        'pe5': pe5,
        'output': z
    }
예제 #2
0
    def create_model(self):

        mean_removed_features = minus(self.input,
                                      constant(114),
                                      name='mean_removed_input')

        with default_options(activation=None, pad=True, bias=True):
            self.model = Sequential([
                Convolution2D((11, 11),
                              96,
                              init=normal(0.01),
                              pad=False,
                              name='conv1'),
                Activation(activation=relu, name='relu1'),
                self.__local_response_normalization(1.0,
                                                    2,
                                                    0.0001,
                                                    0.75,
                                                    name='norm1'),
                MaxPooling((3, 3), (2, 2), name='pool1'),
                Convolution2D((5, 5),
                              192,
                              init=normal(0.01),
                              init_bias=0.1,
                              name='conv2'),
                Activation(activation=relu, name='relu2'),
                self.__local_response_normalization(1.0,
                                                    2,
                                                    0.0001,
                                                    0.75,
                                                    name='norm2'),
                MaxPooling((3, 3), (2, 2), name='pool2'),
                Convolution2D((3, 3), 384, init=normal(0.01), name='conv3'),
                Activation(activation=relu, name='relu3'),
                Convolution2D((3, 3),
                              384,
                              init=normal(0.01),
                              init_bias=0.1,
                              name='conv4'),
                Activation(activation=relu, name='relu4'),
                Convolution2D((3, 3),
                              256,
                              init=normal(0.01),
                              init_bias=0.1,
                              name='conv5'),
                Activation(activation=relu, name='relu5'),
                MaxPooling((3, 3), (2, 2), name='pool5'),
                Dense(4096, init=normal(0.005), init_bias=0.1, name='fc6'),
                Activation(activation=relu, name='relu6'),
                Dropout(0.5, name='drop6'),
                Dense(4096, init=normal(0.005), init_bias=0.1, name='fc7'),
                Activation(activation=relu, name='relu7'),
                Dropout(0.5, name='drop7'),
                Dense(self.number_labels, init=normal(0.01), name='fc8')
            ])(mean_removed_features)
예제 #3
0
파일: models.py 프로젝트: patykov/TCC
def create_vgg16(feature_var, num_classes, dropout=0.9):

    with default_options(activation=None, pad=True, bias=True):
        z = Sequential([
            # we separate Convolution and ReLU to name the output for feature
            # extraction (usually before ReLU)
            For(
                range(2), lambda i: [
                    Convolution2D((3, 3), 64, name='conv1_{}'.format(i)),
                    Activation(activation=relu, name='relu1_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool1'),
            For(
                range(2), lambda i: [
                    Convolution2D((3, 3), 128, name='conv2_{}'.format(i)),
                    Activation(activation=relu, name='relu2_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool2'),
            For(
                range(3), lambda i: [
                    Convolution2D((3, 3), 256, name='conv3_{}'.format(i)),
                    Activation(activation=relu, name='relu3_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool3'),
            For(
                range(3), lambda i: [
                    Convolution2D((3, 3), 512, name='conv4_{}'.format(i)),
                    Activation(activation=relu, name='relu4_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool4'),
            For(
                range(3), lambda i: [
                    Convolution2D((3, 3), 512, name='conv5_{}'.format(i)),
                    Activation(activation=relu, name='relu5_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool5'),
            Dense(4096, name='fc6'),
            Activation(activation=relu, name='relu6'),
            Dropout(dropout, name='drop6'),
            Dense(4096, name='fc7'),
            Activation(activation=relu, name='relu7'),
            Dropout(dropout, name='drop7'),
            Dense(num_classes, name='fc8')
        ])(feature_var)

    return z
예제 #4
0
def create_vgg19():

    # Input variables denoting the features and label data
    feature_var = input((num_channels, image_height, image_width))
    label_var = input((num_classes))

    # apply model to input
    # remove mean value
    input = minus(feature_var,
                  constant([[[104]], [[117]], [[124]]]),
                  name='mean_removed_input')

    with default_options(activation=None, pad=True, bias=True):
        z = Sequential([
            # we separate Convolution and ReLU to name the output for feature extraction (usually before ReLU)
            For(
                range(2), lambda i: [
                    Convolution2D((3, 3), 64, name='conv1_{}'.format(i)),
                    Activation(activation=relu, name='relu1_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool1'),
            For(
                range(2), lambda i: [
                    Convolution2D((3, 3), 128, name='conv2_{}'.format(i)),
                    Activation(activation=relu, name='relu2_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool2'),
            For(
                range(4), lambda i: [
                    Convolution2D((3, 3), 256, name='conv3_{}'.format(i)),
                    Activation(activation=relu, name='relu3_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool3'),
            For(
                range(4), lambda i: [
                    Convolution2D((3, 3), 512, name='conv4_{}'.format(i)),
                    Activation(activation=relu, name='relu4_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool4'),
            For(
                range(4), lambda i: [
                    Convolution2D((3, 3), 512, name='conv5_{}'.format(i)),
                    Activation(activation=relu, name='relu5_{}'.format(i)),
                ]),
            MaxPooling((2, 2), (2, 2), name='pool5'),
            Dense(4096, name='fc6'),
            Activation(activation=relu, name='relu6'),
            Dropout(0.5, name='drop6'),
            Dense(4096, name='fc7'),
            Activation(activation=relu, name='relu7'),
            Dropout(0.5, name='drop7'),
            Dense(num_classes, name='fc8')
        ])(input)

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)
    pe5 = classification_error(z, label_var, topN=5)

    log_number_of_parameters(z)
    print()

    return {
        'feature': feature_var,
        'label': label_var,
        'ce': ce,
        'pe': pe,
        'pe5': pe5,
        'output': z
    }
예제 #5
0
from autcar import Trainer
from cntk.layers import Dense, Sequential, Activation, Convolution2D, MaxPooling, Dropout, BatchNormalization
from cntk import softmax, relu

input_folder_path = "src/ml/data/autcar_training"
output_folder_path = "src/ml/data/autcar_training_balanced"
image_width = 224
image_height = 168

trainer = Trainer(deeplearning_framework="cntk", image_height=image_height, image_width=image_width)
trainer.create_balanced_dataset(input_folder_path, output_folder_path=output_folder_path)

model = Sequential([
    Convolution2D(filter_shape=(5,5), num_filters=32, strides=(1,1), pad=True, name="first_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="first_max"),
    Convolution2D(filter_shape=(3,3), num_filters=48, strides=(1,1), pad=True, name="second_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="second_max"),
    Convolution2D(filter_shape=(3,3), num_filters=64, strides=(1,1), pad=True, name="third_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="third_max"),
    Convolution2D(filter_shape=(5,5), num_filters=32, strides=(1,1), pad=True, name="fourth_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    Dense(100, activation=relu),
    Dropout(0.1),
    Dense(12, activation=softmax)