예제 #1
0
def LSTM_sequence_classifer_net(feature, num_output_classes, embedding_dim, LSTM_dim, cell_dim):
    embedding_function = embedding(feature, embedding_dim)
    LSTM_function = LSTMP_component_with_self_stabilization(
        embedding_function.output, LSTM_dim, cell_dim)[0]
    thought_vector = sequence.last(LSTM_function)

    return linear_layer(thought_vector, num_output_classes)
예제 #2
0
def LSTM_sequence_classifer_net(input, num_output_classes, embedding_dim, LSTM_dim, cell_dim):
    embedding_function = embedding(input, embedding_dim)
    LSTM_function = LSTMP_component_with_self_stabilization(
        embedding_function.output, LSTM_dim, cell_dim)[0]
    thought_vector = sequence.last(LSTM_function)

    return linear_layer(thought_vector, num_output_classes)
예제 #3
0
def LSTM_sequence_classifer_net(input, num_output_classes, embedding_dim,
                                LSTM_dim, cell_dim):
    embedded_inputs = embedding(input, embedding_dim)
    lstm_outputs = simple_lstm(embedded_inputs, LSTM_dim, cell_dim)[0]
    thought_vector = sequence.last(lstm_outputs)
    return linear_layer(thought_vector, num_output_classes)
예제 #4
0
파일: simplernn.py 프로젝트: FDecaYed/CNTK
def LSTM_sequence_classifer_net(input, num_output_classes, embedding_dim,
                                LSTM_dim, cell_dim):
    embedded_inputs = embedding(input, embedding_dim)
    lstm_outputs = simple_lstm(embedded_inputs, LSTM_dim, cell_dim)[0]
    thought_vector = sequence.last(lstm_outputs)
    return linear_layer(thought_vector, num_output_classes)