def test_random_sample_inclusion_frequency(weights, num_samples, allow_duplicates, expected, tolerance, raises_exception, device_id, precision): weights = AA(weights); if raises_exception: with pytest.raises(ValueError): result = random_sample_inclusion_frequency(weights, num_samples, allow_duplicates) result.eval() else: result = random_sample_inclusion_frequency(weights, num_samples, allow_duplicates) assert np.allclose(result.eval(), expected, atol=tolerance)
def test_random_sample_inclusion_frequency(weights, num_samples, allow_duplicates, expected, tolerance, raises_exception, device_id, precision): weights = AA(weights) if raises_exception: with pytest.raises(ValueError): result = random_sample_inclusion_frequency(weights, num_samples, allow_duplicates) result.eval() else: result = random_sample_inclusion_frequency(weights, num_samples, allow_duplicates) assert np.allclose(result.eval(), expected, atol=tolerance)
def cross_entropy_with_sampled_softmax( hidden_vector, # Node providing the output of the recurrent layers target_vector, # Node providing the expected labels (as sparse vectors) vocab_dim, # Vocabulary size hidden_dim, # Dimension of the hidden vector num_samples, # Number of samples to use for sampled softmax sampling_weights, # Node providing weights to be used for the weighted sampling allow_duplicates=False # Boolean flag to control whether to use sampling with replacement (allow_duplicates == True) or without replacement. ): bias = C.layers.Parameter(shape=(vocab_dim, 1), init=0) weights = C.layers.Parameter(shape=(vocab_dim, hidden_dim), init=C.initializer.glorot_uniform()) sample_selector_sparse = C.random_sample( sampling_weights, num_samples, allow_duplicates) # sparse matrix [num_samples * vocab_size] if use_sparse: sample_selector = sample_selector_sparse else: # Note: Sampled softmax with dense data is only supported for debugging purposes. # It might easily run into memory issues as the matrix 'I' below might be quite large. # In case we wan't to a dense representation for all data we have to convert the sample selector I = C.Constant(np.eye(vocab_dim, dtype=np.float32)) sample_selector = C.times(sample_selector_sparse, I) inclusion_probs = C.random_sample_inclusion_frequency( sampling_weights, num_samples, allow_duplicates) # dense row [1 * vocab_size] log_prior = C.log(inclusion_probs) # dense row [1 * vocab_dim] print("hidden_vector: " + str(hidden_vector.shape)) wS = C.times(sample_selector, weights, name='wS') # [num_samples * hidden_dim] print("ws:" + str(wS.shape)) zS = C.times_transpose(wS, hidden_vector, name='zS1') + C.times( sample_selector, bias, name='zS2') - C.times_transpose( sample_selector, log_prior, name='zS3') # [num_samples] # Getting the weight vector for the true label. Dimension hidden_dim wT = C.times(target_vector, weights, name='wT') # [1 * hidden_dim] zT = C.times_transpose(wT, hidden_vector, name='zT1') + C.times( target_vector, bias, name='zT2') - C.times_transpose( target_vector, log_prior, name='zT3') # [1] zSReduced = C.reduce_log_sum_exp(zS) # Compute the cross entropy that is used for training. # We don't check whether any of the classes in the random samples coincides with the true label, so it might happen that the true class is counted # twice in the normalizing denominator of sampled softmax. cross_entropy_on_samples = C.log_add_exp(zT, zSReduced) - zT # For applying the model we also output a node providing the input for the full softmax z = C.times_transpose(weights, hidden_vector) + bias z = C.reshape(z, shape=(vocab_dim)) zSMax = C.reduce_max(zS) error_on_samples = C.less(zT, zSMax) return (z, cross_entropy_on_samples, error_on_samples)
def cross_entropy_with_sampled_softmax( hidden_vector, # Node providing the output of the recurrent layers target_vector, # Node providing the expected labels (as sparse vectors) vocab_dim, # Vocabulary size hidden_dim, # Dimension of the hidden vector num_samples, # Number of samples to use for sampled softmax sampling_weights, # Node providing weights to be used for the weighted sampling allow_duplicates = False # Boolean flag to control whether to use sampling with replacement (allow_duplicates == True) or without replacement. ): bias = C.Parameter(shape = (vocab_dim, 1), init = 0) weights = C.Parameter(shape = (vocab_dim, hidden_dim), init = C.initializer.glorot_uniform()) sample_selector_sparse = C.random_sample(sampling_weights, num_samples, allow_duplicates) # sparse matrix [num_samples * vocab_size] if use_sparse: sample_selector = sample_selector_sparse else: # Note: Sampled softmax with dense data is only supported for debugging purposes. # It might easily run into memory issues as the matrix 'I' below might be quite large. # In case we wan't to a dense representation for all data we have to convert the sample selector I = C.Constant(np.eye(vocab_dim, dtype=np.float32)) sample_selector = C.times(sample_selector_sparse, I) inclusion_probs = C.random_sample_inclusion_frequency(sampling_weights, num_samples, allow_duplicates) # dense row [1 * vocab_size] log_prior = C.log(inclusion_probs) # dense row [1 * vocab_dim] print("hidden_vector: "+str(hidden_vector.shape)) wS = C.times(sample_selector, weights, name='wS') # [num_samples * hidden_dim] print("ws:"+str(wS.shape)) zS = C.times_transpose(wS, hidden_vector, name='zS1') + C.times(sample_selector, bias, name='zS2') - C.times_transpose (sample_selector, log_prior, name='zS3')# [num_samples] # Getting the weight vector for the true label. Dimension hidden_dim wT = C.times(target_vector, weights, name='wT') # [1 * hidden_dim] zT = C.times_transpose(wT, hidden_vector, name='zT1') + C.times(target_vector, bias, name='zT2') - C.times_transpose(target_vector, log_prior, name='zT3') # [1] zSReduced = C.reduce_log_sum_exp(zS) # Compute the cross entropy that is used for training. # We don't check whether any of the classes in the random samples coincides with the true label, so it might happen that the true class is counted # twice in the normalizing denominator of sampled softmax. cross_entropy_on_samples = C.log_add_exp(zT, zSReduced) - zT # For applying the model we also output a node providing the input for the full softmax z = C.times_transpose(weights, hidden_vector) + bias z = C.reshape(z, shape = (vocab_dim)) zSMax = C.reduce_max(zS) error_on_samples = C.less(zT, zSMax) return (z, cross_entropy_on_samples, error_on_samples)
def cross_entropy_with_sampled_softmax( hidden_vector, label_vector, vocab_dim, hidden_dim, num_samples, sampling_weights, allow_duplicates = False ): bias = C.layers.Parameter(shape = (vocab_dim, 1), init = 0) weights = C.layers.Parameter(shape = (vocab_dim, hidden_dim), init = C.initializer.glorot_uniform()) sample_selector_sparse = C.random_sample(sampling_weights, num_samples, allow_duplicates) sample_selector = sample_selector_sparse inclusion_probs = C.random_sample_inclusion_frequency(sampling_weights, num_samples, allow_duplicates) log_prior = C.log(inclusion_probs) wS = C.times(sample_selector, weights, name='wS') zS = C.times_transpose(wS, hidden_vector, name='zS1') + C.times(sample_selector, bias, name='zS2') - C.times_transpose (sample_selector, log_prior, name='zS3') # Getting the weight vector for the true label. Dimension hidden_dim wT = C.times(label_vector, weights, name='wT') zT = C.times_transpose(wT, hidden_vector, name='zT1') + C.times(label_vector, bias, name='zT2') - C.times_transpose(label_vector, log_prior, name='zT3') zSReduced = C.reduce_log_sum_exp(zS) # Compute the cross entropy that is used for training. cross_entropy_on_samples = C.log_add_exp(zT, zSReduced) - zT # For applying the model we also output a node providing the input for the full softmax z = C.times_transpose(weights, hidden_vector) + bias z = C.reshape(z, shape = (vocab_dim)) zSMax = C.reduce_max(zS) error_on_samples = C.less(zT, zSMax) return (z, cross_entropy_on_samples, error_on_samples)