예제 #1
0
    def __init__(self,
                 model,
                 train_set,
                 test_set,
                 output_model_name,
                 testing_mode,
                 folds=None,
                 regression_type=0):
        self.__model = model
        self.__x_train, self.__y_train = train_set
        self.__train_set_size = len(self.__y_train)
        self.__x_test, self.__y_test = test_set
        self.__test_set_size = len(self.__y_test)
        self.__testing_mode = testing_mode
        self.__cross_val_folds = folds
        self.__is_cross_val = (folds is not None)
        self.__features = list(self.__x_train.columns)
        self.__labels = [
            str(l)
            for l in list(set(self.__y_train).union(set(self.__y_test)))
        ]
        self.__metrics = {'model': output_model_name}
        self.__y_pred = None
        self.__experiment = Experiment.init(
            'test_charts')  # replace with: self.__experiment = Experiment()
        self.__regression_type = SKTrainerRegression.REGRESSION_TYPE[
            regression_type]

        self.__coef, self.__intercept = None, None
 def log_trial_start(self, trial):
     e = CNVRGExperiment.init()
     self._cnvrg_experiments[trial.trial_id] = e['slug']
     config = trial.config.copy()
     config.pop("callbacks", None)
     e.log_param("trial_id", trial.trial_id)
     e.log_param("run_id", trial.trial_id.split("_")[0])
     e.log(str(config))
     for item in config:
         e.log_param(item, config.get(item))
     e.log("======")
     e.log(str(trial))
예제 #3
0
	def __init__(self, model, train_set, test_set, output_model_name, testing_mode):
		self.__model = model
		self.__x_train, _ = (train_set, None) if len(train_set) == 1 else train_set
		self.__train_set_size = len(self.__x_train)
		self.__x_test, self.__y_test = (test_set, None) if len(train_set) == 1 else train_set
		self.__test_set_size = len(self.__x_test)
		self.__testing_mode = testing_mode
		self.__features = list(self.__x_train.columns)
		self.__metrics = {'model': output_model_name}
		self.__labeled = len(train_set) == 2 or len(test_set) == 2  # if any of the sets includes target column.
		# self.__experiment = Experiment()
		self.__experiment = Experiment.init("test_charts")
예제 #4
0
파일: train.py 프로젝트: giacomov/mnist
    model = Net().to(device)

    # Load checkpoint
    if args.ckpf != '':
        if use_cuda:
            model.load_state_dict(torch.load(args.ckpf))
        else:
            # Load GPU model on CPU
            model.load_state_dict(torch.load(args.ckpf, map_location=lambda storage, loc: storage))

    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    try:
        e = Experiment()
    except:
        e = Experiment.init()

    def train(args, model, device, train_loader, optimizer, epoch):
        """Training"""

        model.train()

        tot_loss = 0

        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()