예제 #1
0
class minimize(Minimizer, CovmatSampler):
    ignore_prior: bool
    confidence_for_unbounded: float
    method: str
    override_bobyqa: Optional[Mapping]
    override_scipy: Optional[Mapping]
    seed: Optional[int]

    def initialize(self):
        self.mpi_info("Initializing")
        self.max_evals = read_dnumber(self.max_evals, self.model.prior.d())
        # Configure target
        method = self.model.loglike if self.ignore_prior else self.model.logpost
        kwargs = {"make_finite": True}
        if self.ignore_prior:
            kwargs["return_derived"] = False
        self.logp = lambda x: method(x, **kwargs)
        # Try to load info from previous samples.
        # If none, sample from reference (make sure that it has finite like/post)
        initial_point = None
        if self.output:
            files = self.output.find_collections()
            collection_in = None
            if files:
                if more_than_one_process():
                    if 1 + get_mpi_rank() <= len(files):
                        collection_in = Collection(self.model,
                                                   self.output,
                                                   name=str(1 +
                                                            get_mpi_rank()),
                                                   resuming=True)
                else:
                    collection_in = self.output.load_collections(
                        self.model, concatenate=True)
            if collection_in:
                initial_point = (collection_in.bestfit()
                                 if self.ignore_prior else collection_in.MAP())
                initial_point = initial_point[list(
                    self.model.parameterization.sampled_params())].values
                self.log.info("Starting from %s of previous chain:",
                              "best fit" if self.ignore_prior else "MAP")
        if initial_point is None:
            this_logp = -np.inf
            while not np.isfinite(this_logp):
                initial_point = self.model.prior.reference()
                this_logp = self.logp(initial_point)
            self.log.info("Starting from random initial point:")
        self.log.info(
            dict(
                zip(self.model.parameterization.sampled_params(),
                    initial_point)))

        self._bounds = self.model.prior.bounds(
            confidence_for_unbounded=self.confidence_for_unbounded)

        # TODO: if ignore_prior, one should use *like* covariance (this is *post*)
        covmat = self._load_covmat(self.output)[0]

        # scale by conditional parameter widths (since not using correlation structure)
        scales = np.minimum(1 / np.sqrt(np.diag(np.linalg.inv(covmat))),
                            (self._bounds[:, 1] - self._bounds[:, 0]) / 3)

        # Cov and affine transformation
        # Transform to space where initial point is at centre, and cov is normalised
        # Cannot do rotation, as supported minimization routines assume bounds aligned
        # with the parameter axes.
        self._affine_transform_matrix = np.diag(1 / scales)
        self._inv_affine_transform_matrix = np.diag(scales)
        self._scales = scales
        self._affine_transform_baseline = initial_point
        initial_point = self.affine_transform(initial_point)
        np.testing.assert_allclose(initial_point,
                                   np.zeros(initial_point.shape))
        bounds = np.array(
            [self.affine_transform(self._bounds[:, i]) for i in range(2)]).T
        # Configure method
        if self.method.lower() == "bobyqa":
            self.minimizer = pybobyqa.solve
            self.kwargs = {
                "objfun": (lambda x: -self.logp_transf(x)),
                "x0":
                initial_point,
                "bounds":
                np.array(list(zip(*bounds))),
                "seek_global_minimum":
                (True if get_mpi_size() in [0, 1] else False),
                "maxfun":
                int(self.max_evals)
            }
            self.kwargs = recursive_update(deepcopy(self.kwargs),
                                           self.override_bobyqa or {})
            self.log.debug(
                "Arguments for pybobyqa.solve:\n%r",
                {k: v
                 for k, v in self.kwargs.items() if k != "objfun"})
        elif self.method.lower() == "scipy":
            self.minimizer = scpminimize
            self.kwargs = {
                "fun": (lambda x: -self.logp_transf(x)),
                "x0": initial_point,
                "bounds": bounds,
                "options": {
                    "maxiter": self.max_evals,
                    "disp": (self.log.getEffectiveLevel() == logging.DEBUG)
                }
            }
            self.kwargs = recursive_update(deepcopy(self.kwargs),
                                           self.override_scipy or {})
            self.log.debug(
                "Arguments for scipy.optimize.minimize:\n%r",
                {k: v
                 for k, v in self.kwargs.items() if k != "fun"})
        else:
            methods = ["bobyqa", "scipy"]
            raise LoggedError(self.log,
                              "Method '%s' not recognized. Try one of %r.",
                              self.method, methods)

    def affine_transform(self, x):
        return (x - self._affine_transform_baseline) / self._scales

    def inv_affine_transform(self, x):
        # fix up rounding errors on bounds to avoid -np.inf likelihoods
        return np.clip(x * self._scales + self._affine_transform_baseline,
                       self._bounds[:, 0], self._bounds[:, 1])

    def logp_transf(self, x):
        return self.logp(self.inv_affine_transform(x))

    def _run(self):
        """
        Runs `scipy.minimize`
        """
        self.log.info("Starting minimization.")
        try:
            self.result = self.minimizer(**self.kwargs)
        except:
            self.log.error("Minimizer '%s' raised an unexpected error:",
                           self.method)
            raise
        self.success = (self.result.success if self.method.lower() == "scipy"
                        else self.result.flag == self.result.EXIT_SUCCESS)
        if self.success:
            self.log.info("Finished successfully!")
        else:
            if self.method.lower() == "bobyqa":
                reason = {
                    self.result.EXIT_MAXFUN_WARNING:
                    "Maximum allowed objective evaluations reached. "
                    "This is the most likely return value when using multiple restarts.",
                    self.result.EXIT_SLOW_WARNING:
                    "Maximum number of slow iterations reached.",
                    self.result.EXIT_FALSE_SUCCESS_WARNING:
                    "Py-BOBYQA reached the maximum number of restarts which decreased the"
                    " objective, but to a worse value than was found in a previous run.",
                    self.result.EXIT_INPUT_ERROR:
                    "Error in the inputs.",
                    self.result.EXIT_TR_INCREASE_ERROR:
                    "Error occurred when solving the trust region subproblem.",
                    self.result.EXIT_LINALG_ERROR:
                    "Linear algebra error, e.g. the interpolation points produced a "
                    "singular linear system."
                }[self.result.flag]
            else:
                reason = ""
            self.log.error("Finished unsuccessfully." +
                           (" Reason: " + reason if reason else ""))
        self.process_results()

    def process_results(self):
        """
        Determines success (or not), chooses best (if MPI)
        and produces output (if requested).
        """
        evals_attr_ = evals_attr[self.method.lower()]
        # If something failed
        if not hasattr(self, "result"):
            return
        if more_than_one_process():
            results = get_mpi_comm().gather(self.result, root=0)
            successes = get_mpi_comm().gather(self.success, root=0)
            _affine_transform_baselines = get_mpi_comm().gather(
                self._affine_transform_baseline, root=0)
            if is_main_process():
                mins = [(getattr(r, evals_attr_) if s else np.inf)
                        for r, s in zip(results, successes)]
                i_min = np.argmin(mins)
                self.result = results[i_min]
                self._affine_transform_baseline = _affine_transform_baselines[
                    i_min]
        else:
            successes = [self.success]
        if is_main_process():
            if not any(successes):
                raise LoggedError(
                    self.log,
                    "Minimization failed! Here is the raw result object:\n%s",
                    str(self.result))
            elif not all(successes):
                self.log.warning('Some minimizations failed!')
            elif more_than_one_process():
                if max(mins) - min(mins) > 1:
                    self.log.warning('Big spread in minima: %r', mins)
                elif max(mins) - min(mins) > 0.2:
                    self.log.warning('Modest spread in minima: %r', mins)

            logp_min = -np.array(getattr(self.result, evals_attr_))
            x_min = self.inv_affine_transform(self.result.x)
            self.log.info("-log(%s) minimized to %g",
                          "likelihood" if self.ignore_prior else "posterior",
                          -logp_min)
            recomputed_post_min = self.model.logposterior(x_min, cached=False)
            recomputed_logp_min = (sum(recomputed_post_min.loglikes)
                                   if self.ignore_prior else
                                   recomputed_post_min.logpost)
            if not np.allclose(logp_min, recomputed_logp_min, atol=1e-2):
                raise LoggedError(
                    self.log,
                    "Cannot reproduce log minimum to within 0.01. Maybe your "
                    "likelihood is stochastic or large numerical error? "
                    "Recomputed min: %g (was %g) at %r", recomputed_logp_min,
                    logp_min, x_min)
            self.minimum = OnePoint(self.model,
                                    self.output,
                                    name="",
                                    extension=get_collection_extension(
                                        self.ignore_prior))
            self.minimum.add(x_min,
                             derived=recomputed_post_min.derived,
                             logpost=recomputed_post_min.logpost,
                             logpriors=recomputed_post_min.logpriors,
                             loglikes=recomputed_post_min.loglikes)
            self.log.info("Parameter values at minimum:\n%s",
                          self.minimum.data.to_string())
            self.minimum.out_update()
            self.dump_getdist()

    def products(self):
        r"""
        Returns a dictionary containing:

        - ``minimum``: :class:`OnePoint` that maximizes the posterior or likelihood
          (depending on ``ignore_prior``).

        - ``result_object``: instance of results class of
          `scipy <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`_
          or `pyBOBYQA
          <https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/userguide.html>`_.

        - ``M``: inverse of the affine transform matrix (see below).
          ``None`` if no transformation applied.

        - ``X0``: offset of the affine transform matrix (see below)
          ``None`` if no transformation applied.

        If non-trivial ``M`` and ``X0`` are returned, this means that the minimizer has
        been working on an affine-transformed parameter space :math:`x^\prime`, from which
        the real space points can be obtained as :math:`x = M x^\prime + X_0`. This inverse
        transformation needs to be applied to the coordinates appearing inside the
        ``result_object``.
        """
        if is_main_process():
            return {
                "minimum": self.minimum,
                "result_object": self.result,
                "M": self._inv_affine_transform_matrix,
                "X0": self._affine_transform_baseline
            }

    def getdist_point_text(self, params, weight=None, minuslogpost=None):
        lines = []
        if weight is not None:
            lines.append('  weight    = %s' % weight)
        if minuslogpost is not None:
            lines.append(' -log(Like) = %s' % minuslogpost)
            lines.append('  chi-sq    = %s' % (2 * minuslogpost))
        lines.append('')
        labels = self.model.parameterization.labels()
        label_list = list(labels)
        if hasattr(params, 'chi2_names'):
            label_list += params.chi2_names
        width = max(len(lab) for lab in label_list) + 2

        def add_section(pars):
            for p, val in pars:
                lab = labels.get(p, p)
                num = label_list.index(p) + 1
                if isinstance(val,
                              (float, np.floating)) and len(str(val)) > 10:
                    lines.append("%5d  %-17.9e %-*s %s" %
                                 (num, val, width, p, lab))
                else:
                    lines.append("%5d  %-17s %-*s %s" %
                                 (num, val, width, p, lab))

        # num_sampled = len(self.model.parameterization.sampled_params())
        # num_derived = len(self.model.parameterization.derived_params())
        add_section([(p, params[p])
                     for p in self.model.parameterization.sampled_params()])
        lines.append('')
        add_section([[p, value] for p, value in
                     self.model.parameterization.constant_params().items()])
        lines.append('')
        add_section([[p, params[p]]
                     for p in self.model.parameterization.derived_params()])
        if hasattr(params, 'chi2_names'):
            labels.update({
                p:
                r'\chi^2_{\rm %s}' % (_undo_chi2_name(p).replace("_", r"\ "))
                for p in params.chi2_names
            })
            add_section([[chi2, params[chi2]] for chi2 in params.chi2_names])
        return "\n".join(lines)

    def dump_getdist(self):
        if not self.output:
            return
        getdist_bf = self.getdist_point_text(
            self.minimum, minuslogpost=self.minimum['minuslogpost'])
        out_filename = os.path.join(
            self.output.folder,
            self.output.prefix + getdist_ext_ignore_prior[self.ignore_prior])
        with open(out_filename, 'w', encoding="utf-8") as f:
            f.write(getdist_bf)

    @classmethod
    def output_files_regexps(cls, output, info=None, minimal=False):
        ignore_prior = bool(info.get("ignore_prior", False))
        ext_collection = get_collection_extension(ignore_prior)
        ext_getdist = getdist_ext_ignore_prior[ignore_prior]
        regexps = [
            re.compile(output.prefix_regexp_str + re.escape(ext.lstrip(".")) +
                       "$") for ext in [ext_collection, ext_getdist]
        ]
        return [(r, None) for r in regexps]

    @classmethod
    def check_force_resume(cls, output, info=None):
        """
        Performs the necessary checks on existing files if resuming or forcing
        (including deleting some output files when forcing).
        """
        if output.is_resuming():
            output.log.warning(
                "Minimizer does not support resuming. Ignoring.")
            output.set_resuming(False)
        super().check_force_resume(output, info=info)
예제 #2
0
class mcmc(Sampler):
    def initialize(self):
        """Initializes the sampler:
        creates the proposal distribution and draws the initial sample."""
        self.log.debug("Initializing")
        for p in [
                "burn_in", "max_tries", "output_every", "check_every",
                "callback_every"
        ]:
            setattr(
                self, p,
                read_dnumber(getattr(self, p), self.model.prior.d(),
                             dtype=int))
        if self.callback_every is None:
            self.callback_every = self.check_every
        # Burning-in countdown -- the +1 accounts for the initial point (always accepted)
        self.burn_in_left = self.burn_in + 1
        # Max # checkpoints to wait, in case one process dies without sending MPI_ABORT
        self.been_waiting = 0
        self.max_waiting = max(50, self.max_tries / self.model.prior.d())
        if self.resuming and (max(self.mpi_size or 0, 1) != max(
                get_mpi_size(), 1)):
            self.log.error(
                "Cannot resume a sample with a different number of chains: "
                "was %d and now is %d.", max(self.mpi_size, 1),
                max(get_mpi_size(), 1))
            raise HandledException
        if not self.resuming and self.output:
            # Delete previous files (if not "forced", the run would have already failed)
            if ((os.path.abspath(self.covmat_filename()) != os.path.abspath(
                    str(self.covmat)))):
                try:
                    os.remove(self.covmat_filename())
                except OSError:
                    pass
            # There may be more that chains than expected,
            # if #ranks was bigger in a previous run
            i = 0
            while True:
                i += 1
                collection_filename, _ = self.output.prepare_collection(str(i))
                try:
                    os.remove(collection_filename)
                except OSError:
                    break
        # One collection per MPI process: `name` is the MPI rank + 1
        name = str(1 + (lambda r: r if r is not None else 0)(get_mpi_rank()))
        self.collection = Collection(self.model,
                                     self.output,
                                     name=name,
                                     resuming=self.resuming)
        self.current_point = OnePoint(self.model, OutputDummy({}), name=name)
        # Use standard MH steps by default
        self.get_new_sample = self.get_new_sample_metropolis
        # Prepare oversampling / dragging if applicable
        self.effective_max_samples = self.max_samples
        if self.oversample and self.drag:
            self.log.error("Choose either oversampling or dragging, not both.")
            raise HandledException
        if self.oversample:
            factors, blocks = self.model.likelihood._speeds_of_params(
                int_speeds=True)
            self.oversampling_factors = factors
            self.log.info("Oversampling with factors:\n" + "\n".join([
                "   %d : %r" % (f, b)
                for f, b in zip(self.oversampling_factors, blocks)
            ]))
            self.i_last_slow_block = None
            # No way right now to separate slow and fast
            slow_params = list(self.model.parameterization.sampled_params())
        elif self.drag:
            speeds, blocks = self.model.likelihood._speeds_of_params(
                fast_slow=True, int_speeds=True)
            # For now, no blocking inside either fast or slow: just 2 blocks
            self.i_last_slow_block = 0
            if np.all(speeds == speeds[0]):
                self.log.error(
                    "All speeds are equal or too similar: cannot drag! "
                    "Make sure to define accurate likelihoods' speeds.")
                raise HandledException
            # Make the 1st factor 1:
            speeds = [1, speeds[1] / speeds[0]]
            # Target: dragging step taking as long as slow step
            self.drag_interp_steps = self.drag * speeds[1]
            # Per dragging step, the (fast) posterior is evaluated *twice*,
            self.drag_interp_steps /= 2
            self.drag_interp_steps = int(np.round(self.drag_interp_steps))
            fast_params = list(chain(*blocks[1 + self.i_last_slow_block:]))
            # Not too much or too little dragging
            drag_limits = [(int(l) * len(fast_params) if l is not None else l)
                           for l in self.drag_limits]
            if drag_limits[
                    0] is not None and self.drag_interp_steps < drag_limits[0]:
                self.log.warning(
                    "Number of dragging steps clipped from below: was not "
                    "enough to efficiently explore the fast directions -- "
                    "avoid this limit by decreasing 'drag_limits[0]'.")
                self.drag_interp_steps = drag_limits[0]
            if drag_limits[
                    1] is not None and self.drag_interp_steps > drag_limits[1]:
                self.log.warning(
                    "Number of dragging steps clipped from above: "
                    "excessive, probably inefficient, exploration of the "
                    "fast directions -- "
                    "avoid this limit by increasing 'drag_limits[1]'.")
                self.drag_interp_steps = drag_limits[1]
            # Re-scale steps between checkpoint and callback to the slow dimensions only
            slow_params = list(chain(*blocks[:1 + self.i_last_slow_block]))
            self.n_slow = len(slow_params)
            for p in ["check_every", "callback_every"]:
                setattr(
                    self, p,
                    int(getattr(self, p) * self.n_slow / self.model.prior.d()))
            self.log.info("Dragging with oversampling per step:\n" +
                          "\n".join([
                              "   %d : %r" % (f, b)
                              for f, b in zip([1, self.drag_interp_steps],
                                              [blocks[0], fast_params])
                          ]))
            self.get_new_sample = self.get_new_sample_dragging
        else:
            _, blocks = self.model.likelihood._speeds_of_params()
            self.oversampling_factors = [1 for b in blocks]
            slow_params = list(self.model.parameterization.sampled_params())
            self.n_slow = len(slow_params)
        # Turn parameter names into indices
        self.blocks = [[
            list(self.model.parameterization.sampled_params()).index(p)
            for p in b
        ] for b in blocks]
        self.proposer = BlockedProposer(
            self.blocks,
            oversampling_factors=self.oversampling_factors,
            i_last_slow_block=self.i_last_slow_block,
            proposal_scale=self.proposal_scale)
        # Build the initial covariance matrix of the proposal, or load from checkpoint
        if self.resuming:
            covmat = np.loadtxt(self.covmat_filename())
            self.log.info("Covariance matrix from checkpoint.")
        else:
            covmat = self.initial_proposal_covmat(slow_params=slow_params)
            self.log.info("Initial covariance matrix.")
        self.log.debug(
            "Sampling with covmat:\n%s",
            DataFrame(
                covmat,
                columns=self.model.parameterization.sampled_params(),
                index=self.model.parameterization.sampled_params()).to_string(
                    line_width=_line_width))
        self.proposer.set_covariance(covmat)
        # Prepare callback function
        if self.callback_function is not None:
            self.callback_function_callable = (get_external_function(
                self.callback_function))

    def initial_proposal_covmat(self, slow_params=None):
        """
        Build the initial covariance matrix, using the data provided, in descending order
        of priority:
        1. "covmat" field in the "mcmc" sampler block.
        2. "proposal" field for each parameter.
        3. variance of the reference pdf.
        4. variance of the prior pdf.

        The covariances between parameters when both are present in a covariance matrix
        provided through option 1 are preserved. All other covariances are assumed 0.
        """
        params_infos = self.model.parameterization.sampled_params_info()
        covmat = np.diag([np.nan] * len(params_infos))
        # Try to generate it automatically
        if isinstance(self.covmat,
                      six.string_types) and self.covmat.lower() == "auto":
            slow_params_info = {
                p: info
                for p, info in params_infos.items() if p in slow_params
            }
            auto_covmat = self.model.likelihood._get_auto_covmat(
                slow_params_info)
            if auto_covmat:
                self.covmat = os.path.join(auto_covmat["folder"],
                                           auto_covmat["name"])
                self.log.info("Covariance matrix selected automatically: %s",
                              self.covmat)
            else:
                self.covmat = None
                self.log.info(
                    "Could not automatically find a good covmat. "
                    "Will generate from parameter info (proposal and prior).")
        # If given, load and test the covariance matrix
        if isinstance(self.covmat, six.string_types):
            covmat_pre = "{%s}" % _path_install
            if self.covmat.startswith(covmat_pre):
                self.covmat = self.covmat.format(
                    **{
                        _path_install: self.path_install
                    }).replace("/", os.sep)
            try:
                with open(self.covmat, "r") as file_covmat:
                    header = file_covmat.readline()
                loaded_covmat = np.loadtxt(self.covmat)
            except TypeError:
                self.log.error(
                    "The property 'covmat' must be a file name,"
                    "but it's '%s'.", str(self.covmat))
                raise HandledException
            except IOError:
                self.log.error("Can't open covmat file '%s'.", self.covmat)
                raise HandledException
            if header[0] != "#":
                self.log.error(
                    "The first line of the covmat file '%s' "
                    "must be one list of parameter names separated by spaces "
                    "and staring with '#', and the rest must be a square matrix, "
                    "with one row per line.", self.covmat)
                raise HandledException
            loaded_params = header.strip("#").strip().split()
        elif hasattr(self.covmat, "__getitem__"):
            if not self.covmat_params:
                self.log.error(
                    "If a covariance matrix is passed as a numpy array, "
                    "you also need to pass the parameters it corresponds to "
                    "via 'covmat_params: [name1, name2, ...]'.")
                raise HandledException
            loaded_params = self.covmat_params
            loaded_covmat = self.covmat
        if self.covmat is not None:
            if len(loaded_params) != len(set(loaded_params)):
                self.log.error(
                    "There are duplicated parameters in the header of the "
                    "covmat file '%s' ", self.covmat)
                raise HandledException
            if len(loaded_params) != loaded_covmat.shape[0]:
                self.log.error(
                    "The number of parameters in the header of '%s' and the "
                    "dimensions of the matrix do not coincide.", self.covmat)
                raise HandledException
            if not (np.allclose(loaded_covmat.T, loaded_covmat)
                    and np.all(np.linalg.eigvals(loaded_covmat) > 0)):
                self.log.error(
                    "The covmat loaded from '%s' is not a positive-definite, "
                    "symmetric square matrix.", self.covmat)
                raise HandledException
            # Fill with parameters in the loaded covmat
            renames = [[p] + np.atleast_1d(v.get(_p_renames, [])).tolist()
                       for p, v in params_infos.items()]
            renames = odict([[a[0], a] for a in renames])
            indices_used, indices_sampler = zip(*[[
                loaded_params.index(p),
                [
                    list(params_infos).index(q) for q, a in renames.items()
                    if p in a
                ]
            ] for p in loaded_params])
            if not any(indices_sampler):
                self.log.error(
                    "A proposal covariance matrix has been loaded, but none of its "
                    "parameters are actually sampled here. Maybe a mismatch between"
                    " parameter names in the covariance matrix and the input file?"
                )
                raise HandledException
            indices_used, indices_sampler = zip(
                *[[i, j] for i, j in zip(indices_used, indices_sampler) if j])
            if any(len(j) - 1 for j in indices_sampler):
                first = next(j for j in indices_sampler if len(j) > 1)
                self.log.error(
                    "The parameters %s have duplicated aliases. Can't assign them an "
                    "element of the covariance matrix unambiguously.",
                    ", ".join([list(params_infos)[i] for i in first]))
                raise HandledException
            indices_sampler = list(chain(*indices_sampler))
            covmat[np.ix_(indices_sampler,
                          indices_sampler)] = (loaded_covmat[np.ix_(
                              indices_used, indices_used)])
            self.log.info("Covariance matrix loaded for params %r",
                          [list(params_infos)[i] for i in indices_sampler])
            missing_params = set(params_infos).difference(
                set([list(params_infos)[i] for i in indices_sampler]))
            if missing_params:
                self.log.info("Missing proposal covariance for params %r", [
                    p for p in self.model.parameterization.sampled_params()
                    if p in missing_params
                ])
            else:
                self.log.info(
                    "All parameters' covariance loaded from given covmat.")
        # Fill gaps with "proposal" property, if present, otherwise ref (or prior)
        where_nan = np.isnan(covmat.diagonal())
        if np.any(where_nan):
            covmat[where_nan, where_nan] = np.array([
                info.get(_p_proposal, np.nan)**2
                for info in params_infos.values()
            ])[where_nan]
            # we want to start learning the covmat earlier
            self.log.info(
                "Covariance matrix " +
                ("not present" if np.all(where_nan) else "not complete") + ". "
                "We will start learning the covariance of the proposal earlier:"
                " R-1 = %g (was %g).", self.learn_proposal_Rminus1_max_early,
                self.learn_proposal_Rminus1_max)
            self.learn_proposal_Rminus1_max = self.learn_proposal_Rminus1_max_early
        where_nan = np.isnan(covmat.diagonal())
        if np.any(where_nan):
            covmat[where_nan, where_nan] = (
                self.model.prior.reference_covmat().diagonal()[where_nan])
        assert not np.any(np.isnan(covmat))
        return covmat

    def run(self):
        """
        Runs the sampler.
        """
        # Get first point, to be discarded -- not possible to determine its weight
        # Still, we need to compute derived parameters, since, as the proposal "blocked",
        # we may be saving the initial state of some block.
        # NB: if resuming but nothing was written (burn-in not finished): re-start
        self.log.info("Initial point:")
        if self.resuming and self.collection.n():
            initial_point = (self.collection[
                self.collection.sampled_params].ix[self.collection.n() -
                                                   1]).values.copy()
            logpost = -(self.collection[_minuslogpost].ix[self.collection.n() -
                                                          1].copy())
            logpriors = -(self.collection[self.collection.prior_names].ix[
                self.collection.n() - 1].copy())
            loglikes = -0.5 * (self.collection[self.collection.chi2_names].ix[
                self.collection.n() - 1].copy())
            derived = (self.collection[self.collection.derived_params].ix[
                self.collection.n() - 1].values.copy())
        else:
            initial_point = self.model.prior.reference(
                max_tries=self.max_tries)
            logpost, logpriors, loglikes, derived = self.model.logposterior(
                initial_point)
        self.current_point.add(initial_point,
                               derived=derived,
                               logpost=logpost,
                               logpriors=logpriors,
                               loglikes=loglikes)
        self.log.info(
            "\n%s",
            self.current_point.data.to_string(index=False,
                                              line_width=_line_width))
        # Initial dummy checkpoint (needed when 1st checkpoint not reached in prev. run)
        self.write_checkpoint()
        # Main loop!
        self.log.info("Sampling!" + (
            " (NB: nothing will be printed until %d burn-in samples " %
            self.burn_in + "have been obtained)" if self.burn_in else ""))
        while self.n() < self.effective_max_samples and not self.converged:
            self.get_new_sample()
            # Callback function
            if (hasattr(self, "callback_function_callable")
                    and not (max(self.n(), 1) % self.callback_every)
                    and self.current_point[_weight] == 1):
                self.callback_function_callable(self)
            # Checking convergence and (optionally) learning the covmat of the proposal
            if self.check_all_ready():
                self.check_convergence_and_learn_proposal()
            if self.n() == self.effective_max_samples:
                self.log.info(
                    "Reached maximum number of accepted steps allowed. "
                    "Stopping.")
        # Make sure the last batch of samples ( < output_every ) are written
        self.collection._out_update()
        if get_mpi():
            Ns = (lambda x: np.array(get_mpi_comm().gather(x)))(self.n())
        else:
            Ns = [self.n()]
        if not get_mpi_rank():
            self.log.info("Sampling complete after %d accepted steps.",
                          sum(Ns))

    def n(self, burn_in=False):
        """
        Returns the total number of steps taken, including or not burn-in steps depending
        on the value of the `burn_in` keyword.
        """
        return self.collection.n() + (0 if not burn_in else self.burn_in -
                                      self.burn_in_left + 1)

    def get_new_sample_metropolis(self):
        """
        Draws a new trial point from the proposal pdf and checks whether it is accepted:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        trial = deepcopy(
            self.current_point[self.model.parameterization._sampled])
        self.proposer.get_proposal(trial)
        logpost_trial, logprior_trial, loglikes_trial, derived = self.model.logposterior(
            trial)
        accept = self.metropolis_accept(logpost_trial,
                                        -self.current_point["minuslogpost"])
        self.process_accept_or_reject(accept, trial, derived, logpost_trial,
                                      logprior_trial, loglikes_trial)
        return accept

    def get_new_sample_dragging(self):
        """
        Draws a new trial point in the slow subspace, and gets the corresponding trial
        in the fast subspace by "dragging" the fast parameters.
        Finally, checks the acceptance of the total step using the "dragging" pdf:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        # Prepare starting and ending points *in the SLOW subspace*
        # "start_" and "end_" mean here the extremes in the SLOW subspace
        start_slow_point = self.current_point[
            self.model.parameterization._sampled]
        start_slow_logpost = -self.current_point["minuslogpost"]
        end_slow_point = deepcopy(start_slow_point)
        self.proposer.get_proposal_slow(end_slow_point)
        self.log.debug("Proposed slow end-point: %r", end_slow_point)
        # Save derived parameters of delta_slow jump, in case I reject all the dragging
        # steps but accept the move in the slow direction only
        end_slow_logpost, end_slow_logprior, end_slow_loglikes, derived = (
            self.model.logposterior(end_slow_point))
        if end_slow_logpost == -np.inf:
            self.current_point.increase_weight(1)
            return False
        # trackers of the dragging
        current_start_point = start_slow_point
        current_end_point = end_slow_point
        current_start_logpost = start_slow_logpost
        current_end_logpost = end_slow_logpost
        current_end_logprior = end_slow_logprior
        current_end_loglikes = end_slow_loglikes
        # accumulators for the "dragging" probabilities to be metropolist-tested
        # at the end of the interpolation
        start_drag_logpost_acc = start_slow_logpost
        end_drag_logpost_acc = end_slow_logpost
        # start dragging
        for i_step in range(1, 1 + self.drag_interp_steps):
            self.log.debug("Dragging step: %d", i_step)
            # take a step in the fast direction in both slow extremes
            delta_fast = np.zeros(len(current_start_point))
            self.proposer.get_proposal_fast(delta_fast)
            self.log.debug("Proposed fast step delta: %r", delta_fast)
            proposal_start_point = deepcopy(current_start_point)
            proposal_start_point += delta_fast
            proposal_end_point = deepcopy(current_end_point)
            proposal_end_point += delta_fast
            # get the new extremes for the interpolated probability
            # (reject if any of them = -inf; avoid evaluating both if just one fails)
            # Force the computation of the (slow blocks) derived params at the starting
            # point, but discard them, since they contain the starting point's fast ones,
            # not used later -- save the end point's ones.
            proposal_start_logpost = self.model.logposterior(
                proposal_start_point)[0]
            proposal_end_logpost, proposal_end_logprior, \
            proposal_end_loglikes, derived_proposal_end = (
                self.model.logposterior(proposal_end_point)
                if proposal_start_logpost > -np.inf
                else (-np.inf, None, [], []))
            if proposal_start_logpost > -np.inf and proposal_end_logpost > -np.inf:
                # create the interpolated probability and do a Metropolis test
                frac = i_step / (1 + self.drag_interp_steps)
                proposal_interp_logpost = (
                    (1 - frac) * proposal_start_logpost +
                    frac * proposal_end_logpost)
                current_interp_logpost = ((1 - frac) * current_start_logpost +
                                          frac * current_end_logpost)
                accept_drag = self.metropolis_accept(proposal_interp_logpost,
                                                     current_interp_logpost)
            else:
                accept_drag = False
            self.log.debug("Dragging step: %s",
                           ("accepted" if accept_drag else "rejected"))
            # If the dragging step was accepted, do the drag
            if accept_drag:
                current_start_point = proposal_start_point
                current_start_logpost = proposal_start_logpost
                current_end_point = proposal_end_point
                current_end_logpost = proposal_end_logpost
                current_end_logprior = proposal_end_logprior
                current_end_loglikes = proposal_end_loglikes
                derived = derived_proposal_end
            # In any case, update the dragging probability for the final metropolis test
            start_drag_logpost_acc += current_start_logpost
            end_drag_logpost_acc += current_end_logpost
        # Test for the TOTAL step
        accept = self.metropolis_accept(
            end_drag_logpost_acc / self.drag_interp_steps,
            start_drag_logpost_acc / self.drag_interp_steps)
        self.process_accept_or_reject(accept, current_end_point, derived,
                                      current_end_logpost,
                                      current_end_logprior,
                                      current_end_loglikes)
        self.log.debug("TOTAL step: %s",
                       ("accepted" if accept else "rejected"))
        return accept

    def metropolis_accept(self, logp_trial, logp_current):
        """
        Symmetric-proposal Metropolis-Hastings test.

        Returns:
           ``True`` or ``False``.
        """
        if logp_trial == -np.inf:
            return False
        elif logp_trial > logp_current:
            return True
        else:
            return np.random.exponential() > (logp_current - logp_trial)

    def process_accept_or_reject(self,
                                 accept_state,
                                 trial=None,
                                 derived=None,
                                 logpost_trial=None,
                                 logprior_trial=None,
                                 loglikes_trial=None):
        """Processes the acceptance/rejection of the new point."""
        if accept_state:
            # add the old point to the collection (if not burning or initial point)
            if self.burn_in_left <= 0:
                self.current_point.add_to_collection(self.collection)
                self.log.debug("New sample, #%d: \n   %r", self.n(),
                               self.current_point)
                if self.n() % self.output_every == 0:
                    self.collection._out_update()
            else:
                self.burn_in_left -= 1
                self.log.debug("Burn-in sample:\n   %r", self.current_point)
                if self.burn_in_left == 0 and self.burn_in:
                    self.log.info(
                        "Finished burn-in phase: discarded %d accepted steps.",
                        self.burn_in)
            # set the new point as the current one, with weight one
            self.current_point.add(trial,
                                   derived=derived,
                                   weight=1,
                                   logpost=logpost_trial,
                                   logpriors=logprior_trial,
                                   loglikes=loglikes_trial)
        else:  # not accepted
            self.current_point.increase_weight(1)
            # Failure criterion: chain stuck! (but be more permissive during burn_in)
            max_tries_now = self.max_tries * (
                1 + (10 - 1) * np.sign(self.burn_in_left))
            if self.current_point[_weight] > max_tries_now:
                self.collection._out_update()
                self.log.error(
                    "The chain has been stuck for %d attempts. Stopping sampling. "
                    "If this has happened often, try improving your "
                    "reference point/distribution. Alternatively (though not advisable) "
                    "make 'max_tries: np.inf' (or 'max_tries: .inf' in yaml)",
                    max_tries_now)
                raise HandledException

    # Functions to check convergence and learn the covariance of the proposal distribution

    def check_all_ready(self):
        """
        Checks if the chain(s) is(/are) ready to check convergence and, if requested,
        learn a new covariance matrix for the proposal distribution.
        """
        msg_ready = (
            ("Ready to" if get_mpi() or self.learn_proposal else "") +
            " check convergence" +
            (" and" if get_mpi() and self.learn_proposal else "") +
            (" learn a new proposal covmat" if self.learn_proposal else ""))
        # If *just* (weight==1) got ready to check+learn
        if (self.n() > 0 and self.current_point[_weight] == 1
                and not (self.n() % self.check_every)):
            self.log.info("Checkpoint: %d samples accepted.", self.n())
            if get_mpi():
                self.been_waiting += 1
                if self.been_waiting > self.max_waiting:
                    self.log.error(
                        "Waiting for too long for all chains to be ready. "
                        "Maybe one of them is stuck or died unexpectedly?")
                    raise HandledException
            self.model.dump_timing()
            # If not MPI, we are ready
            if not get_mpi():
                if msg_ready:
                    self.log.info(msg_ready)
                return True
            # If MPI, tell the rest that we are ready -- we use a "gather"
            # ("reduce" was problematic), but we are in practice just pinging
            if not hasattr(self, "req"):  # just once!
                self.all_ready = np.empty(get_mpi_size())
                self.req = get_mpi_comm().Iallgather(np.array([1.]),
                                                     self.all_ready)
                self.log.info(msg_ready + " (waiting for the rest...)")
        # If all processes are ready to learn (= communication finished)
        if self.req.Test() if hasattr(self, "req") else False:
            # Sanity check: actually all processes have finished
            assert np.all(self.all_ready == 1), (
                "This should not happen! Notify the developers. (Got %r)",
                self.all_ready)
            if get_mpi_rank() == 0:
                self.log.info("All chains are r" + msg_ready[1:])
            delattr(self, "req")
            self.been_waiting = 0
            # Just in case, a barrier here
            get_mpi_comm().barrier()
            return True
        return False

    def check_convergence_and_learn_proposal(self):
        """
        Checks the convergence of the sampling process (MPI only), and, if requested,
        learns a new covariance matrix for the proposal distribution from the covariance
        of the last samples.
        """
        if get_mpi():
            # Compute and gather means, covs and CL intervals of last half of chains
            mean = self.collection.mean(first=int(self.n() / 2))
            cov = self.collection.cov(first=int(self.n() / 2))
            mcsamples = self.collection._sampled_to_getdist_mcsamples(
                first=int(self.n() / 2))
            try:
                bound = np.array([[
                    mcsamples.confidence(i,
                                         limfrac=self.Rminus1_cl_level / 2.,
                                         upper=which)
                    for i in range(self.model.prior.d())
                ] for which in [False, True]]).T
                success_bounds = True
            except:
                bound = None
                success_bounds = False
            Ns, means, covs, bounds = map(
                lambda x: np.array(get_mpi_comm().gather(x)),
                [self.n(), mean, cov, bound])
        else:
            # Compute and gather means, covs and CL intervals of last m-1 chain fractions
            m = 1 + self.Rminus1_single_split
            cut = int(self.collection.n() / m)
            if cut <= 1:
                self.log.error(
                    "Not enough points in chain to check convergence. "
                    "Increase `check_every` or reduce `Rminus1_single_split`.")
                raise HandledException
            Ns = (m - 1) * [cut]
            means = np.array([
                self.collection.mean(first=i * cut, last=(i + 1) * cut - 1)
                for i in range(1, m)
            ])
            covs = np.array([
                self.collection.cov(first=i * cut, last=(i + 1) * cut - 1)
                for i in range(1, m)
            ])
            # No logging of warnings temporarily, so getdist won't complain unnecessarily
            logging.disable(logging.WARNING)
            mcsampleses = [
                self.collection._sampled_to_getdist_mcsamples(
                    first=i * cut, last=(i + 1) * cut - 1)
                for i in range(1, m)
            ]
            logging.disable(logging.NOTSET)
            try:
                bounds = [
                    np.array([[
                        mcs.confidence(i,
                                       limfrac=self.Rminus1_cl_level / 2.,
                                       upper=which)
                        for i in range(self.model.prior.d())
                    ] for which in [False, True]]).T for mcs in mcsampleses
                ]
                success_bounds = True
            except:
                bounds = None
                success_bounds = False
        # Compute convergence diagnostics
        if not get_mpi_rank():
            # "Within" or "W" term -- our "units" for assessing convergence
            # and our prospective new covariance matrix
            mean_of_covs = np.average(covs, weights=Ns, axis=0)
            # "Between" or "B" term
            # We don't weight with the number of samples in the chains here:
            # shorter chains will likely be outliers, and we want to notice them
            cov_of_means = np.atleast_2d(np.cov(means.T))  # , fweights=Ns)
            # For numerical stability, we turn mean_of_covs into correlation matrix:
            #   rho = (diag(Sigma))^(-1/2) * Sigma * (diag(Sigma))^(-1/2)
            # and apply the same transformation to the mean of covs (same eigenvals!)
            diagSinvsqrt = np.diag(np.power(np.diag(cov_of_means), -0.5))
            corr_of_means = diagSinvsqrt.dot(cov_of_means).dot(diagSinvsqrt)
            norm_mean_of_covs = diagSinvsqrt.dot(mean_of_covs).dot(
                diagSinvsqrt)
            # Cholesky of (normalized) mean of covs and eigvals of Linv*cov_of_means*L
            try:
                L = np.linalg.cholesky(norm_mean_of_covs)
            except np.linalg.LinAlgError:
                self.log.warning(
                    "Negative covariance eigenvectors. "
                    "This may mean that the covariance of the samples does not "
                    "contain enough information at this point. "
                    "Skipping this checkpoint")
                success = False
            else:
                Linv = np.linalg.inv(L)
                try:
                    eigvals = np.linalg.eigvalsh(
                        Linv.dot(corr_of_means).dot(Linv.T))
                    success = True
                except np.linalg.LinAlgError:
                    self.log.warning("Could not compute eigenvalues. "
                                     "Skipping this checkpoint.")
                    success = False
                if success:
                    Rminus1 = max(np.abs(eigvals))
                    # For real square matrices, a possible def of the cond number is:
                    condition_number = Rminus1 / min(np.abs(eigvals))
                    self.log.debug("Condition number = %g", condition_number)
                    self.log.debug("Eigenvalues = %r", eigvals)
                    self.log.info(
                        "Convergence of means: R-1 = %f after %d accepted steps"
                        % (Rminus1, (sum(Ns) if get_mpi() else self.n())) +
                        (" = sum(%r)" % list(Ns) if get_mpi() else ""))
                    # Have we converged in means?
                    # (criterion must be fulfilled twice in a row)
                    if max(Rminus1, self.Rminus1_last) < self.Rminus1_stop:
                        # Check the convergence of the bounds of the confidence intervals
                        # Same as R-1, but with the rms deviation from the mean bound
                        # in units of the mean standard deviation of the chains
                        if success_bounds:
                            Rminus1_cl = (np.std(bounds, axis=0).T /
                                          np.sqrt(np.diag(mean_of_covs)))
                            self.log.debug("normalized std's of bounds = %r",
                                           Rminus1_cl)
                            self.log.info(
                                "Convergence of bounds: R-1 = %f after %d " %
                                (np.max(Rminus1_cl),
                                 (sum(Ns) if get_mpi() else self.n())) +
                                "accepted steps" +
                                (" = sum(%r)" % list(Ns) if get_mpi() else ""))
                            if np.max(Rminus1_cl) < self.Rminus1_cl_stop:
                                self.converged = True
                                self.log.info("The run has converged!")
                            self._Ns = Ns
                        else:
                            self.log.info(
                                "Computation of the bounds was not possible. "
                                "Waiting until the next checkpoint")
        if get_mpi():
            # Broadcast and save the convergence status and the last R-1 of means
            success = get_mpi_comm().bcast(
                (success if not get_mpi_rank() else None), root=0)
            if success:
                self.Rminus1_last = get_mpi_comm().bcast(
                    (Rminus1 if not get_mpi_rank() else None), root=0)
                self.converged = get_mpi_comm().bcast(
                    (self.converged if not get_mpi_rank() else None), root=0)
        else:
            if success:
                self.Rminus1_last = Rminus1
        # Do we want to learn a better proposal pdf?
        if self.learn_proposal and not self.converged and success:
            good_Rminus1 = (self.learn_proposal_Rminus1_max > self.Rminus1_last
                            > self.learn_proposal_Rminus1_min)
            if not good_Rminus1:
                if not get_mpi_rank():
                    self.log.info("Bad convergence statistics: "
                                  "waiting until the next checkpoint.")
                return
            if get_mpi():
                if get_mpi_rank():
                    mean_of_covs = np.empty(
                        (self.model.prior.d(), self.model.prior.d()))
                get_mpi_comm().Bcast(mean_of_covs, root=0)
            elif not get_mpi():
                mean_of_covs = covs[0]
            try:
                self.proposer.set_covariance(mean_of_covs)
            except:
                self.log.debug(
                    "Updating covariance matrix failed unexpectedly. "
                    "waiting until next checkpoint.")
            if not get_mpi_rank():
                self.log.info("Updated covariance matrix of proposal pdf.")
                self.log.debug("%r", mean_of_covs)
        # Save checkpoint info
        self.write_checkpoint()

    def write_checkpoint(self):
        if not get_mpi_rank() and self.output:
            checkpoint_filename = self.checkpoint_filename()
            covmat_filename = self.covmat_filename()
            np.savetxt(covmat_filename,
                       self.proposer.get_covariance(),
                       header=" ".join(
                           list(self.model.parameterization.sampled_params())))
            checkpoint_info = {
                _sampler: {
                    self.name:
                    odict([
                        ["converged", bool(self.converged)],
                        ["Rminus1_last", self.Rminus1_last],
                        ["proposal_scale",
                         self.proposer.get_scale()],
                        ["blocks", self.blocks],
                        ["oversampling_factors", self.oversampling_factors],
                        ["i_last_slow_block", self.i_last_slow_block],
                        [
                            "burn_in",
                            (
                                self.
                                burn_in  # initial: repeat burn-in if not finished
                                if not self.n() and self.burn_in_left else "d")
                        ],  # to avoid overweighting last point of prev. run
                        ["mpi_size", get_mpi_size()]
                    ])
                }
            }
            yaml_dump_file(checkpoint_filename,
                           checkpoint_info,
                           error_if_exists=False)
            self.log.debug("Dumped checkpoint info and current covmat.")

    # Finally: returning the computed products ###########################################

    def products(self):
        """
        Auxiliary function to define what should be returned in a scripted call.

        Returns:
           The sample ``Collection`` containing the accepted steps.
        """
        return {"sample": self.collection}
class minimize(Sampler):
    def initialize(self):
        """Prepares the arguments for `scipy.minimize`."""
        if not get_mpi_rank():
            self.log.info("Initializing")
        self.logp = ((lambda x: self.model.logposterior(x, make_finite=True)[0])
                     if not self.ignore_prior else
                     (lambda x: sum(self.model.loglikes(x, return_derived=True)[0])))
        # Initial point: sample from reference and make sure that it has finite lik/post
        this_logp = -np.inf
        while not np.isfinite(this_logp):
            initial_point = self.model.prior.reference()
            this_logp = self.logp(initial_point)
        self.kwargs = {
            "fun": (lambda x: -self.logp(x)),
            "x0": initial_point,
            "bounds": self.model.prior.bounds(confidence_for_unbounded=0.999),
            "tol": self.tol,
            "options": {
                "maxiter": self.maxiter,
                "disp": (self.log.getEffectiveLevel() == logging.DEBUG)}}
        self.kwargs.update(self.override or {})
        self.log.debug("Arguments for scipy.optimize.minimize:\n%r", self.kwargs)

    def run(self):
        """
        Runs `scipy.minimize`
        """
        self.log.info("Starting minimization.")
        self.result = scpminimize(**self.kwargs)
        if self.result.success:
            self.log.info("Finished succesfully.")
        else:
            self.log.error("Finished Unsuccesfully.")

    def close(self, *args):
        """
        Determines success (or not), chooses best (if MPI)
        and produces output (if requested).
        """
        # If something failed
        if not hasattr(self, "result"):
            return
        if get_mpi_size():
            results = get_mpi_comm().gather(self.result, root=0)
            if not get_mpi_rank():
                self.result = results[np.argmin([r.fun for r in results])]
        if not get_mpi_rank():
            if not self.result.success:
                self.log.error("Maximization failed! Here is the `scipy` raw result:\n%r",
                               self.result)
                raise HandledException
            self.log.info("log%s maximized at %g",
                          "likelihood" if self.ignore_prior else "posterior",
                          -self.result.fun)
            post = self.model.logposterior(self.result.x)
            recomputed_max = sum(post.loglikes) if self.ignore_prior else post.logpost
            if not np.allclose(-self.result.fun, recomputed_max):
                self.log.error("Cannot reproduce result. Something bad happened. "
                               "Recomputed max: %g at %r", recomputed_max, self.result.x)
                raise HandledException
            self.maximum = OnePoint(
                self.model, self.output, name="maximum",
                extension=("likelihood" if self.ignore_prior else "posterior"))
            self.maximum.add(self.result.x, derived=post.derived, logpost=post.logpost,
                             logpriors=post.logpriors, loglikes=post.loglikes)
            self.log.info("Parameter values at maximum:\n%s"%self.maximum.data.to_string())
            self.maximum._out_update()

    def products(self):
        """
        Auxiliary function to define what should be returned in a scripted call.

        Returns:
           The :class:`OnePoint` that maximizes the posterior or likelihood (depending on
           ``ignore_prior``), and the `scipy.optimize.OptimizeResult
           <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`_
           instance.
        """
        if not get_mpi_rank():
            return {"maximum": self.maximum, "OptimizeResult": self.result}
예제 #4
0
class minimize(Sampler):
    def initialize(self):
        """Prepares the arguments for `scipy.minimize`."""
        if am_single_or_primary_process():
            self.log.info("Initializing")
        self.max_evals = read_dnumber(self.max_evals, self.model.prior.d())
        # Configure target
        method = self.model.loglike if self.ignore_prior else self.model.logpost
        kwargs = {"make_finite": True}
        if self.ignore_prior:
            kwargs.update({"return_derived": False})
        self.logp = lambda x: method(x, **kwargs)
        # Try to load info from previous samples.
        # If none, sample from reference (make sure that it has finite like/post)
        initial_point = None
        covmat = None
        if self.output:
            collection_in = self.output.load_collections(self.model,
                                                         skip=0,
                                                         thin=1,
                                                         concatenate=True)
            if collection_in:
                initial_point = (collection_in.bestfit()
                                 if self.ignore_prior else collection_in.MAP())
                initial_point = initial_point[list(
                    self.model.parameterization.sampled_params())].values
                self.log.info("Starting from %s of previous chain:",
                              "best fit" if self.ignore_prior else "MAP")
                # TODO: if ignore_prior, one should use *like* covariance (this is *post*)
                covmat = collection_in.cov()
        if initial_point is None:
            this_logp = -np.inf
            while not np.isfinite(this_logp):
                initial_point = self.model.prior.reference()
                this_logp = self.logp(initial_point)
            self.log.info("Starting from random initial point:")
        self.log.info(
            dict(
                zip(self.model.parameterization.sampled_params(),
                    initial_point)))
        # Cov and affine transformation
        self._affine_transform_matrix = None
        self._inv_affine_transform_matrix = None
        self._affine_transform_baseline = None
        if covmat is None:
            # Use as much info as we have from ref & prior
            covmat = self.model.prior.reference_covmat()
        # Transform to space where initial point is at centre, and cov is normalised
        sigmas_diag, L = choleskyL(covmat, return_scale_free=True)
        self._affine_transform_matrix = np.linalg.inv(sigmas_diag)
        self._inv_affine_transform_matrix = sigmas_diag
        self._affine_transform_baseline = initial_point
        self.affine_transform = lambda x: (self._affine_transform_matrix.dot(
            x - self._affine_transform_baseline))
        self.inv_affine_transform = lambda x: (
            self._inv_affine_transform_matrix.dot(
                x) + self._affine_transform_baseline)
        bounds = self.model.prior.bounds(
            confidence_for_unbounded=self.confidence_for_unbounded)
        # Re-scale
        self.logp_transf = lambda x: self.logp(self.inv_affine_transform(x))
        initial_point = self.affine_transform(initial_point)
        bounds = np.array(
            [self.affine_transform(bounds[:, i]) for i in range(2)]).T
        # Configure method
        if self.method.lower() == "bobyqa":
            self.minimizer = pybobyqa.solve
            self.kwargs = {
                "objfun": (lambda x: -self.logp_transf(x)),
                "x0":
                initial_point,
                "bounds":
                np.array(list(zip(*bounds))),
                "seek_global_minimum":
                (True if get_mpi_size() in [0, 1] else False),
                "maxfun":
                int(self.max_evals)
            }
            self.kwargs = recursive_update(deepcopy(self.kwargs),
                                           self.override_bobyqa or {})
            self.log.debug(
                "Arguments for pybobyqa.solve:\n%r",
                {k: v
                 for k, v in self.kwargs.items() if k != "objfun"})
        elif self.method.lower() == "scipy":
            self.minimizer = scpminimize
            self.kwargs = {
                "fun": (lambda x: -self.logp_transf(x)),
                "x0": initial_point,
                "bounds": bounds,
                "options": {
                    "maxiter": self.max_evals,
                    "disp": (self.log.getEffectiveLevel() == logging.DEBUG)
                }
            }
            self.kwargs = recursive_update(deepcopy(self.kwargs),
                                           self.override_scipy or {})
            self.log.debug(
                "Arguments for scipy.optimize.minimize:\n%r",
                {k: v
                 for k, v in self.kwargs.items() if k != "fun"})
        else:
            methods = ["bobyqa", "scipy"]
            raise LoggedError(self.log,
                              "Method '%s' not recognized. Try one of %r.",
                              self.method, methods)

    def run(self):
        """
        Runs `scipy.minimize`
        """
        self.log.info("Starting minimization.")
        try:
            self.result = self.minimizer(**self.kwargs)
        except:
            self.log.error("Minimizer '%s' raised an unexpected error:",
                           self.method)
            raise
        self.success = (self.result.success if self.method.lower() == "scipy"
                        else self.result.flag == self.result.EXIT_SUCCESS)
        if self.success:
            self.log.info("Finished successfully!")
        else:
            if self.method.lower() == "bobyqa":
                reason = {
                    self.result.EXIT_MAXFUN_WARNING:
                    "Maximum allowed objective evaluations reached. "
                    "This is the most likely return value when using multiple restarts.",
                    self.result.EXIT_SLOW_WARNING:
                    "Maximum number of slow iterations reached.",
                    self.result.EXIT_FALSE_SUCCESS_WARNING:
                    "Py-BOBYQA reached the maximum number of restarts which decreased the"
                    " objective, but to a worse value than was found in a previous run.",
                    self.result.EXIT_INPUT_ERROR:
                    "Error in the inputs.",
                    self.result.EXIT_TR_INCREASE_ERROR:
                    "Error occurred when solving the trust region subproblem.",
                    self.result.EXIT_LINALG_ERROR:
                    "Linear algebra error, e.g. the interpolation points produced a "
                    "singular linear system."
                }[self.result.flag]
            else:
                reason = ""
            self.log.error("Finished unsuccessfully." +
                           (" Reason: " + reason if reason else ""))

    def close(self, *args):
        """
        Determines success (or not), chooses best (if MPI)
        and produces output (if requested).
        """
        evals_attr_ = evals_attr[self.method.lower()]
        # If something failed
        if not hasattr(self, "result"):
            return
        if get_mpi_size():
            results = get_mpi_comm().gather(self.result, root=0)
            _inv_affine_transform_matrices = get_mpi_comm().gather(
                self._inv_affine_transform_matrix, root=0)
            _affine_transform_baselines = get_mpi_comm().gather(
                self._affine_transform_baseline, root=0)
            if am_single_or_primary_process():
                i_min = np.argmin([getattr(r, evals_attr_) for r in results])
                self.result = results[i_min]
                self._inv_affine_transform_matrix = _inv_affine_transform_matrices[
                    i_min]
                self._affine_transform_baseline = _affine_transform_baselines[
                    i_min]
        if am_single_or_primary_process():
            if not self.success:
                raise LoggedError(
                    self.log,
                    "Minimization failed! Here is the raw result object:\n%s",
                    str(self.result))
            logp_min = -np.array(getattr(self.result, evals_attr_))
            x_min = self.inv_affine_transform(self.result.x)
            self.log.info("-log(%s) minimized to %g",
                          "likelihood" if self.ignore_prior else "posterior",
                          -logp_min)
            recomputed_post_min = self.model.logposterior(x_min, cached=False)
            recomputed_logp_min = (sum(recomputed_post_min.loglikes)
                                   if self.ignore_prior else
                                   recomputed_post_min.logpost)
            if not np.allclose(logp_min, recomputed_logp_min):
                raise LoggedError(
                    self.log,
                    "Cannot reproduce result. Maybe yout likelihood is stochastic? "
                    "Recomputed min: %g (was %g) at %r", recomputed_logp_min,
                    logp_min, x_min)
            self.minimum = OnePoint(
                self.model,
                self.output,
                name="",
                extension=("bestfit.txt"
                           if self.ignore_prior else "minimum.txt"))
            self.minimum.add(x_min,
                             derived=recomputed_post_min.derived,
                             logpost=recomputed_post_min.logpost,
                             logpriors=recomputed_post_min.logpriors,
                             loglikes=recomputed_post_min.loglikes)
            self.log.info("Parameter values at minimum:\n%s",
                          self.minimum.data.to_string())
            self.minimum._out_update()
            self.dump_getdist()

    def products(self):
        r"""
        Returns a dictionary containing:

        - ``minimum``: :class:`OnePoint` that maximizes the posterior or likelihood
          (depending on ``ignore_prior``).

        - ``result_object``: instance of results class of
          `scipy <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`_
          or `pyBOBYQA
          <https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/userguide.html>`_.

        - ``M``: inverse of the affine transform matrix (see below).
          ``None`` if no transformation applied.

        - ``X0``: offset of the affine transform matrix (see below)
          ``None`` if no transformation applied.

        If non-trivial ``M`` and ``X0`` are returned, this means that the minimizer has
        been working on an affine-transformed parameter space :math:`x^\prime`, from which
        the real space points can be obtained as :math:`x = M x^\prime + X_0`. This inverse
        transformation needs to be applied to the coordinates appearing inside the
        ``result_object``.
        """
        if am_single_or_primary_process():
            return {
                "minimum": self.minimum,
                "result_object": self.result,
                "M": self._inv_affine_transform_matrix,
                "X0": self._affine_transform_baseline
            }

    def getdist_point_text(self, params, weight=None, minuslogpost=None):
        lines = []
        if weight is not None:
            lines.append('  weight    = %s' % weight)
        if minuslogpost is not None:
            lines.append(' -log(Like) = %s' % minuslogpost)
            lines.append('  chi-sq    = %s' % (2 * minuslogpost))
        lines.append('')
        labels = self.model.parameterization.labels()
        label_list = list(labels.keys())
        if hasattr(params, 'chi2_names'): label_list += params.chi2_names
        width = max([len(lab) for lab in label_list]) + 2

        def add_section(pars):
            for p, val in pars:
                lab = labels.get(p, p)
                num = label_list.index(p) + 1
                if isinstance(val,
                              (float, np.floating)) and len(str(val)) > 10:
                    lines.append("%5d  %-17.9e %-*s %s" %
                                 (num, val, width, p, lab))
                else:
                    lines.append("%5d  %-17s %-*s %s" %
                                 (num, val, width, p, lab))

        num_sampled = len(self.model.parameterization.sampled_params())
        num_derived = len(self.model.parameterization.derived_params())
        add_section([[p, params[p]]
                     for p in self.model.parameterization.sampled_params()])
        lines.append('')
        add_section([[p, value] for p, value in
                     self.model.parameterization.constant_params().items()])
        lines.append('')
        add_section([[p, params[p]]
                     for p in self.model.parameterization.derived_params()])
        if hasattr(params, 'chi2_names'):
            from cobaya.conventions import _chi2, _separator
            labels.update(
                odict([[
                    p,
                    r'\chi^2_{\rm %s}' %
                    (p.replace(_chi2 + _separator, '').replace("_", r"\ "))
                ] for p in params.chi2_names]))
            add_section([[chi2, params[chi2]] for chi2 in params.chi2_names])
        return "\n".join(lines)

    def dump_getdist(self):
        if not self.output:
            return
        getdist_bf = self.getdist_point_text(
            self.minimum, minuslogpost=self.minimum['minuslogpost'])
        out_filename = os.path.join(
            self.output.folder,
            self.output.prefix + getdist_ext_ignore_prior[self.ignore_prior])
        with open(out_filename, 'w') as f:
            f.write(getdist_bf)
예제 #5
0
class Minimize(Minimizer, CovmatSampler):
    file_base_name = 'minimize'

    ignore_prior: bool
    confidence_for_unbounded: float
    method: str
    best_of: int
    override_bobyqa: Optional[dict]
    override_scipy: Optional[dict]
    max_evals: Union[str, int]

    def initialize(self):
        if self.method not in evals_attr:
            raise LoggedError(self.log, "Method '%s' not recognized. Try one of %r.",
                              self.method, list(evals_attr))

        self.mpi_info("Initializing")
        self.max_iter = int(read_dnumber(self.max_evals, self.model.prior.d()))
        # Configure target
        method = self.model.loglike if self.ignore_prior else self.model.logpost
        kwargs = {"make_finite": True}
        if self.ignore_prior:
            kwargs["return_derived"] = False
        self.logp = lambda x: method(x, **kwargs)

        # Try to load info from previous samples.
        # If none, sample from reference (make sure that it has finite like/post)
        self.initial_points = []
        assert self.best_of > 0
        num_starts = int(np.ceil(self.best_of / mpi.size()))
        if self.output:
            files = self.output.find_collections()
        else:
            files = None
        for start in range(num_starts):
            initial_point = None
            if files:
                collection_in: Optional[SampleCollection]
                if mpi.more_than_one_process() or num_starts > 1:
                    index = 1 + mpi.rank() * num_starts + start
                    if index <= len(files):
                        collection_in = SampleCollection(
                            self.model, self.output, name=str(index), resuming=True)
                    else:
                        collection_in = None
                else:
                    collection_in = self.output.load_collections(self.model,
                                                                 concatenate=True)
                if collection_in:
                    initial_point = (collection_in.bestfit() if self.ignore_prior
                                     else collection_in.MAP())
                    initial_point = initial_point[
                        list(self.model.parameterization.sampled_params())].values
                    self.log.info("Starting %s/%s from %s of previous chain:", start + 1,
                                  num_starts, "best fit" if self.ignore_prior else "MAP")
                    # Compute covmat if input but no .covmat file (e.g. with PolyChord)
                    # Prefer old over `covmat` definition in yaml (same as MCMC)
                    self.covmat = collection_in.cov(derived=False)
                    self.covmat_params = list(
                        self.model.parameterization.sampled_params())
            if initial_point is None:
                for _ in range(self.max_iter // 10 + 5):
                    initial_point = self.model.prior.reference(random_state=self._rng)
                    if np.isfinite(self.logp(initial_point)):
                        break
                else:
                    raise LoggedError(self.log, "Could not find random starting point "
                                                "giving finite posterior")

                self.log.info("Starting %s/%s random initial point:",
                              start + 1, num_starts)
            self.log.info(
                dict(zip(self.model.parameterization.sampled_params(), initial_point)))
            self.initial_points.append(initial_point)

        self._bounds = self.model.prior.bounds(
            confidence_for_unbounded=self.confidence_for_unbounded)
        # TODO: if ignore_prior, one should use *like* covariance (this is *post*)
        covmat = self._load_covmat(prefer_load_old=self.output)[0]
        # scale by conditional parameter widths (since not using correlation structure)
        scales = np.minimum(1 / np.sqrt(np.diag(np.linalg.inv(covmat))),
                            (self._bounds[:, 1] - self._bounds[:, 0]) / 3)
        # Cov and affine transformation
        # Transform to space where initial point is at centre, and cov is normalised
        # Cannot do rotation, as supported minimization routines assume bounds aligned
        # with the parameter axes.
        self._affine_transform_matrix = np.diag(1 / scales)
        self._inv_affine_transform_matrix = np.diag(scales)
        self._scales = scales
        self.result = None

    def affine_transform(self, x):
        return (x - self._affine_transform_baseline) / self._scales

    def inv_affine_transform(self, x):
        # fix up rounding errors on bounds to avoid -np.inf likelihoods
        return np.clip(x * self._scales + self._affine_transform_baseline,
                       self._bounds[:, 0], self._bounds[:, 1])

    def run(self):
        """
        Runs `scipy.Minimize`
        """
        results = []
        successes = []

        def minuslogp_transf(x):
            return -self.logp(self.inv_affine_transform(x))

        for i, initial_point in enumerate(self.initial_points):

            self.log.debug("Starting minimization for starting point %s.", i)

            self._affine_transform_baseline = initial_point
            initial_point = self.affine_transform(initial_point)
            np.testing.assert_allclose(initial_point, np.zeros(initial_point.shape))
            bounds = np.array(
                [self.affine_transform(self._bounds[:, i]) for i in range(2)]).T

            try:
                # Configure method
                if self.method.lower() == "bobyqa":
                    self.kwargs = {
                        "objfun": minuslogp_transf,
                        "x0": initial_point,
                        "bounds": np.array(list(zip(*bounds))),
                        "maxfun": self.max_iter,
                        "rhobeg": 1.,
                        "do_logging": (self.log.getEffectiveLevel() == logging.DEBUG)}
                    self.kwargs = recursive_update(self.kwargs,
                                                   self.override_bobyqa or {})
                    self.log.debug("Arguments for pybobyqa.solve:\n%r",
                                   {k: v for k, v in self.kwargs.items() if
                                    k != "objfun"})
                    result = pybobyqa.solve(**self.kwargs)
                    success = result.flag == result.EXIT_SUCCESS
                    if not success:
                        self.log.error("Finished unsuccessfully. Reason: "
                                       + _bobyqa_errors[result.flag])
                else:
                    self.kwargs = {
                        "fun": minuslogp_transf,
                        "x0": initial_point,
                        "bounds": bounds,
                        "options": {
                            "maxiter": self.max_iter,
                            "disp": (self.log.getEffectiveLevel() == logging.DEBUG)}}
                    self.kwargs = recursive_update(self.kwargs, self.override_scipy or {})
                    self.log.debug("Arguments for scipy.optimize.Minimize:\n%r",
                                   {k: v for k, v in self.kwargs.items() if k != "fun"})
                    result = optimize.minimize(**self.kwargs)
                    success = result.success
                    if not success:
                        self.log.error("Finished unsuccessfully.")
            except:
                self.log.error("Minimizer '%s' raised an unexpected error:", self.method)
                raise
            results += [result]
            successes += [success]

        self.process_results(*mpi.zip_gather(
            [results, successes, self.initial_points,
             [self._inv_affine_transform_matrix] * len(self.initial_points)]))

    @mpi.set_from_root(("_inv_affine_transform_matrix", "_affine_transform_baseline",
                        "result", "minimum"))
    def process_results(self, results, successes, affine_transform_baselines,
                        transform_matrices):
        """
        Determines success (or not), chooses best (if MPI or multiple starts)
        and produces output (if requested).
        """

        evals_attr_ = evals_attr[self.method.lower()]
        results = list(chain(*results))
        successes = list(chain(*successes))
        affine_transform_baselines = list(chain(*affine_transform_baselines))
        transform_matrices = list(chain(*transform_matrices))

        if len(results) > 1:
            mins = [(getattr(r, evals_attr_) if s else np.inf)
                    for r, s in zip(results, successes)]
            i_min: int = np.argmin(mins)  # type: ignore
        else:
            i_min = 0

        self.result = results[i_min]
        self._affine_transform_baseline = affine_transform_baselines[i_min]
        self._inv_affine_transform_matrix = transform_matrices[i_min]
        if not any(successes):
            raise LoggedError(
                self.log, "Minimization failed! Here is the raw result object:\n%s",
                str(self.result))
        elif not all(successes):
            self.log.warning('Some minimizations failed!')
        elif len(results) > 1:
            self.log.info('Finished successfully!')
            # noinspection PyUnboundLocalVariable
            if max(mins) - min(mins) > 1:
                self.log.warning('Big spread in minima: %r', mins)
            elif max(mins) - min(mins) > 0.2:
                self.log.warning('Modest spread in minima: %r', mins)

        logp_min = -np.array(getattr(self.result, evals_attr_))
        x_min = self.inv_affine_transform(self.result.x)
        self.log.info("-log(%s) minimized to %g",
                      "likelihood" if self.ignore_prior else "posterior", -logp_min)
        recomputed_post_min = self.model.logposterior(x_min, cached=False)
        recomputed_logp_min = (sum(recomputed_post_min.loglikes) if self.ignore_prior
                               else recomputed_post_min.logpost)
        if not np.allclose(logp_min, recomputed_logp_min, atol=1e-2):
            raise LoggedError(
                self.log, "Cannot reproduce log minimum to within 0.01. Maybe your "
                          "likelihood is stochastic or large numerical error? "
                          "Recomputed min: %g (was %g) at %r",
                recomputed_logp_min, logp_min, x_min)
        self.minimum = OnePoint(self.model, self.output, name="",
                                extension=get_collection_extension(self.ignore_prior))
        self.minimum.add(x_min, derived=recomputed_post_min.derived,
                         logpost=recomputed_post_min.logpost,
                         logpriors=recomputed_post_min.logpriors,
                         loglikes=recomputed_post_min.loglikes)
        self.log.info(
            "Parameter values at minimum:\n%s", self.minimum.data.to_string())
        self.minimum.out_update()
        self.dump_getdist()

    def products(self):
        r"""
        Returns a dictionary containing:

        - ``minimum``: :class:`OnePoint` that maximizes the posterior or likelihood
          (depending on ``ignore_prior``).

        - ``result_object``: instance of results class of
          `scipy <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html>`_
          or `pyBOBYQA
          <https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/userguide.html>`_.

        - ``M``: inverse of the affine transform matrix (see below).
          ``None`` if no transformation applied.

        - ``X0``: offset of the affine transform matrix (see below)
          ``None`` if no transformation applied.

        If non-trivial ``M`` and ``X0`` are returned, this means that the minimizer has
        been working on an affine-transformed parameter space :math:`x^\prime`, from which
        the real space points can be obtained as :math:`x = M x^\prime + X_0`. This inverse
        transformation needs to be applied to the coordinates appearing inside the
        ``result_object``.
        """
        return {"minimum": self.minimum, "result_object": self.result,
                "M": self._inv_affine_transform_matrix,
                "X0": self._affine_transform_baseline}

    def getdist_point_text(self, params, weight=None, minuslogpost=None):
        lines = []
        if weight is not None:
            lines.append('  weight    = %s' % weight)
        if minuslogpost is not None:
            lines.append(' -log(Like) = %s' % minuslogpost)
            lines.append('  chi-sq    = %s' % (2 * minuslogpost))
        lines.append('')
        labels = self.model.parameterization.labels()
        label_list = list(labels)
        if hasattr(params, 'chi2_names'):
            label_list += params.chi2_names
        width = max(len(lab) for lab in label_list) + 2

        def add_section(pars):
            for p, val in pars:
                lab = labels.get(p, p)
                num = label_list.index(p) + 1
                if isinstance(val, (float, np.floating)) and len(str(val)) > 10:
                    lines.append("%5d  %-17.9e %-*s %s" % (num, val, width, p, lab))
                else:
                    lines.append("%5d  %-17s %-*s %s" % (num, val, width, p, lab))

        # num_sampled = len(self.model.parameterization.sampled_params())
        # num_derived = len(self.model.parameterization.derived_params())
        add_section(
            [(p, params[p]) for p in self.model.parameterization.sampled_params()])
        lines.append('')
        add_section([[p, value] for p, value in
                     self.model.parameterization.constant_params().items()])
        lines.append('')
        add_section(
            [[p, params[p]] for p in self.model.parameterization.derived_params()])
        if hasattr(params, 'chi2_names'):
            labels.update({p: r'\chi^2_{\rm %s}' % (
                undo_chi2_name(p).replace("_", r"\ "))
                           for p in params.chi2_names})
            add_section([[chi2, params[chi2]] for chi2 in params.chi2_names])
        return "\n".join(lines)

    def dump_getdist(self):
        if not self.output:
            return
        getdist_bf = self.getdist_point_text(self.minimum,
                                             minuslogpost=self.minimum['minuslogpost'])
        out_filename = os.path.join(
            self.output.folder,
            self.output.prefix + getdist_ext_ignore_prior[self.ignore_prior])
        with open(out_filename, 'w', encoding="utf-8") as f:
            f.write(getdist_bf)

    @classmethod
    def output_files_regexps(cls, output, info=None, minimal=False):
        ignore_prior = bool(info.get("ignore_prior", False))
        ext_collection = get_collection_extension(ignore_prior)
        ext_getdist = getdist_ext_ignore_prior[ignore_prior]
        regexps = [
            re.compile(output.prefix_regexp_str + re.escape(ext.lstrip(".")) + "$")
            for ext in [ext_collection, ext_getdist]]
        return [(r, None) for r in regexps]

    @classmethod
    def check_force_resume(cls, output, info=None):
        """
        Performs the necessary checks on existing files if resuming or forcing
        (including deleting some output files when forcing).
        """
        if output.is_resuming():
            if mpi.is_main_process():
                raise LoggedError(
                    output.log, "Minimizer does not support resuming. "
                                "If you want to start over, force "
                                "('-f', '--force', 'force: True')")
        super().check_force_resume(output, info=info)

    @classmethod
    def _get_desc(cls, info=None):
        if info is None:
            method = None
        else:
            method = info.get("method", cls.get_defaults()["method"])
        desc_bobyqa = (r"Py-BOBYQA implementation "
                       r"\cite{2018arXiv180400154C,2018arXiv181211343C} of the BOBYQA "
                       r"minimization algorithm \cite{BOBYQA}")
        desc_scipy = (r"Scipy minimizer \cite{2020SciPy-NMeth} (check citation for the "
                      r"actual algorithm used at \url{https://docs.scipy.org/doc/scipy/re"
                      r"ference/generated/scipy.optimize.Minimize.html}")
        if method and method.lower() == "bobyqa":
            return desc_bobyqa
        elif method and method.lower() == "scipy":
            return desc_scipy
        else:  # unknown method or no info passed (None)
            return ("Minimizer -- method unknown, possibly one of:"
                    "\na) " + desc_bobyqa + "\nb) " + desc_scipy)
예제 #6
0
class mcmc(Sampler):
    def initialise(self):
        """Initialises the sampler:
        creates the proposal distribution and draws the initial sample."""
        self.log.info("Initializing")
        # Burning-in countdown -- the +1 accounts for the initial point (always accepted)
        self.burn_in_left = self.burn_in + 1
        # One collection per MPI process: `name` is the MPI rank + 1
        name = str(1 + (lambda r: r if r is not None else 0)(get_mpi_rank()))
        self.collection = Collection(self.parametrization,
                                     self.likelihood,
                                     self.output,
                                     name=name)
        self.current_point = OnePoint(self.parametrization,
                                      self.likelihood,
                                      self.output,
                                      name=name)
        # Use the standard steps by default
        self.get_new_sample = self.get_new_sample_metropolis
        # Prepare oversampling / fast-dragging if applicable
        self.effective_max_samples = self.max_samples
        if self.oversample and self.drag:
            self.log.error(
                "Choose either oversampling or fast-dragging, not both.")
            raise HandledException
#        if (self.oversample or self.drag) and len(set(factors)) == 1:
#            self.log.error("All block speeds are similar: "
#                           "no dragging or oversampling possible.")
#            raise HandledException
        if self.oversample:
            factors, blocks = self.likelihood.speeds_of_params(
                oversampling_factors=True)
            self.oversampling_factors = factors
            # WIP: actually, we would have to re-normalise to the dimension of the blocks.
            self.log.info("Oversampling with factors:\n" + "\n".join([
                "   %d : %r" % (f, b)
                for f, b in zip(self.oversampling_factors, blocks)
            ]))
            # WIP: useless until likelihoods have STATES!
            self.log.error("Sorry, oversampling is WIP")
            raise HandledException
        elif self.drag:
            # WIP: for now, can only separate between theory and likelihoods
            # until likelihoods have states
            if not self.likelihood.theory:
                self.log.error(
                    "WIP: dragging disabled for now when no theory code present."
                )
                raise HandledException
#            if self.max_speed_slow < min(speeds) or self.max_speed_slow >= max(speeds):
#                self.log.error("The maximum speed considered slow, `max_speed_slow`, must be "
#                          "%g <= `max_speed_slow < %g, and is %g",
#                          min(speeds), max(speeds), self.max_speed_slow)
#                raise HandledException
            speeds, blocks = self.likelihood.speeds_of_params(int_speeds=True,
                                                              fast_slow=True)
            if np.all(speeds == speeds[0]):
                self.log.error(
                    "All speeds are equal: cannot drag! Make sure to define, "
                    "especially, the speed of the fastest likelihoods.")
            self.i_last_slow_block = 0  # just theory can be slow for now
            fast_params = list(chain(*blocks[1 + self.i_last_slow_block:]))
            self.n_slow = sum(
                len(blocks[i]) for i in range(1 + self.i_last_slow_block))
            self.drag_interp_steps = int(self.drag *
                                         np.round(min(speeds[1:]) / speeds[0]))
            self.log.info("Dragging with oversampling per step:\n" +
                          "\n".join([
                              "   %d : %r" % (f, b)
                              for f, b in zip([1, self.drag_interp_steps],
                                              [blocks[0], fast_params])
                          ]))
            self.get_new_sample = self.get_new_sample_dragging
        else:
            _, blocks = self.likelihood.speeds_of_params()
            self.oversampling_factors = [1 for b in blocks]
            self.n_slow = len(self.parametrization.sampled_params())
        # Turn parameter names into indices
        blocks = [[
            list(self.parametrization.sampled_params().keys()).index(p)
            for p in b
        ] for b in blocks]
        self.proposer = BlockedProposer(
            blocks,
            oversampling_factors=getattr(self, "oversampling_factors", None),
            i_last_slow_block=getattr(self, "i_last_slow_block", None),
            propose_scale=self.propose_scale)
        # Build the initial covariance matrix of the proposal
        covmat = self.initial_proposal_covmat()
        self.log.info("Sampling with covariance matrix:")
        self.log.info("%r", covmat)
        self.proposer.set_covariance(covmat)
        # Prepare callback function
        if self.callback_function is not None:
            self.callback_function_callable = (get_external_function(
                self.callback_function))

    def initial_proposal_covmat(self):
        """
        Build the initial covariance matrix, using the data provided, in descending order
        of priority:
        1. "covmat" field in the "mcmc" sampler block.
        2. "proposal" field for each parameter.
        3. variance of the reference pdf.
        4. variance of the prior pdf.

        The covariances between parameters when both are present in a covariance matrix
        provided through option 1 are preserved. All other covariances are assumed 0.
        """
        params, params_infos = zip(
            *self.parametrization.sampled_params().items())
        covmat = np.diag([np.nan] * len(params))
        # If given, load and test the covariance matrix
        if isinstance(self.covmat, six.string_types):
            covmat_pre = "MODULES:"
            if self.covmat.startswith(covmat_pre):
                self.covmat = os.path.join(get_path_to_installation(),
                                           self.covmat[len(covmat_pre):])
            try:
                with open(self.covmat, "r") as file_covmat:
                    header = file_covmat.readline()
                loaded_covmat = np.loadtxt(self.covmat)
            except TypeError:
                self.log.error(
                    "The property 'covmat' must be a file name,"
                    "but it's '%s'.", str(self.covmat))
                raise HandledException
            except IOError:
                self.log.error("Can't open covmat file '%s'.", self.covmat)
                raise HandledException
            if header[0] != "#":
                self.log.error(
                    "The first line of the covmat file '%s' "
                    "must be one list of parameter names separated by spaces "
                    "and staring with '#', and the rest must be a square matrix, "
                    "with one row per line.", self.covmat)
                raise HandledException
            loaded_params = header.strip("#").strip().split()
        elif hasattr(self.covmat, "__getitem__"):
            if not self.covmat_params:
                self.log.error(
                    "If a covariance matrix is passed as a numpy array, "
                    "you also need to pass the parameters it corresponds to "
                    "via 'covmat_params: [name1, name2, ...]'.")
                raise HandledException
            loaded_params = self.covmat_params
            loaded_covmat = self.covmat
        if self.covmat is not None:
            if len(loaded_params) != len(set(loaded_params)):
                self.log.error(
                    "There are duplicated parameters in the header of the "
                    "covmat file '%s' ", self.covmat)
                raise HandledException
            if len(loaded_params) != loaded_covmat.shape[0]:
                self.log.error(
                    "The number of parameters in the header of '%s' and the "
                    "dimensions of the matrix do not coincide.", self.covmat)
                raise HandledException
            if not (np.allclose(loaded_covmat.T, loaded_covmat)
                    and np.all(np.linalg.eigvals(loaded_covmat) > 0)):
                self.log.error(
                    "The covmat loaded from '%s' is not a positive-definite, "
                    "symmetric square matrix.", self.covmat)
                raise HandledException
            # Fill with parameters in the loaded covmat
            aliases = [[p] + np.atleast_1d(v.get(_p_alias, [])).tolist()
                       for p, v in zip(params, params_infos)]
            aliases = odict([[a[0], a] for a in aliases])
            indices_used, indices_sampler = zip(*[[
                loaded_params.index(p),
                [params.index(q) for q, a in aliases.items() if p in a]
            ] for p in loaded_params])
            indices_used, indices_sampler = zip(
                *[[i, j] for i, j in zip(indices_used, indices_sampler) if j])
            if any(len(j) - 1 for j in indices_sampler):
                first = next(j for j in indices_sampler if len(j) > 1)
                self.log.error(
                    "The parameters %s have duplicated aliases. Can't assign them an "
                    "element of the covariance matrix unambiguously.",
                    ", ".join([params[i] for i in first]))
                raise HandledException
            indices_sampler = list(chain(*indices_sampler))
            if not indices_used:
                self.log.error(
                    "A proposal covariance matrix has been loaded, but none of its "
                    "parameters are actually sampled here. Maybe a mismatch between"
                    " parameter names in the covariance matrix and the input file?"
                )
                raise HandledException
            covmat[np.ix_(indices_sampler,
                          indices_sampler)] = (loaded_covmat[np.ix_(
                              indices_used, indices_used)])
            self.log.info("Covariance matrix loaded for params %r",
                          [params[i] for i in indices_sampler])
            missing_params = set(params).difference(
                set([params[i] for i in indices_sampler]))
            if missing_params:
                self.log.info("Missing proposal covarince for params %r", [
                    p for p in self.parametrization.sampled_params()
                    if p in missing_params
                ])
            else:
                self.log.info(
                    "All parameters' covariance loaded from given covmat.")
        # Fill gaps with "proposal" property, if present, otherwise ref (or prior)
        where_nan = np.isnan(covmat.diagonal())
        if np.any(where_nan):
            covmat[where_nan, where_nan] = np.array([
                info.get(_p_proposal, np.nan)**2 for info in params_infos
            ])[where_nan]
            # we want to start learning the covmat earlier
            self.log.info(
                "Covariance matrix " +
                ("not present" if np.all(where_nan) else "not complete") + ". "
                "We will start learning the covariance of the proposal earlier: "
                "R-1 = %g (was %g).", self.learn_proposal_Rminus1_max_early,
                self.learn_proposal_Rminus1_max)
            self.learn_proposal_Rminus1_max = self.learn_proposal_Rminus1_max_early
        where_nan = np.isnan(covmat.diagonal())
        if np.any(where_nan):
            covmat[where_nan, where_nan] = (
                self.prior.reference_covmat().diagonal()[where_nan])
        assert not np.any(np.isnan(covmat))
        return covmat

    def run(self):
        """
        Runs the sampler.
        """
        # Get first point, to be discarded -- not possible to determine its weight
        # Still, we need to compute derived parameters, since, as the proposal "blocked",
        # we may be saving the initial state of some block.
        initial_point = self.prior.reference(max_tries=self.max_tries)
        logpost, _, _, derived = self.logposterior(initial_point)
        self.current_point.add(initial_point, derived=derived, logpost=logpost)
        self.log.info("Initial point:\n %r ", self.current_point)
        # Main loop!
        self.converged = False
        self.log.info("Sampling!" + (
            "(NB: nothing will be printed until %d burn-in samples " %
            self.burn_in + "have been obtained)" if self.burn_in else ""))
        while self.n() < self.effective_max_samples and not self.converged:
            self.get_new_sample()
            # Callback function
            if (hasattr(self, "callback_function_callable")
                    and not (max(self.n(), 1) % self.callback_every)
                    and self.current_point[_weight] == 1):
                self.callback_function_callable(self)
            # Checking convergence and (optionally) learning the covmat of the proposal
            if self.check_all_ready():
                self.check_convergence_and_learn_proposal()
        # Make sure the last batch of samples ( < output_every ) are written
        self.collection.out_update()
        if not get_mpi_rank():
            self.log.info("Sampling complete after %d accepted steps.",
                          self.n())

    def n(self, burn_in=False):
        """
        Returns the total number of steps taken, including or not burn-in steps depending
        on the value of the `burn_in` keyword.
        """
        return self.collection.n() + (0 if not burn_in else self.burn_in -
                                      self.burn_in_left + 1)

    def get_new_sample_metropolis(self):
        """
        Draws a new trial point from the proposal pdf and checks whether it is accepted:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        trial = deepcopy(
            self.current_point[self.parametrization.sampled_params()])
        self.proposer.get_proposal(trial)
        logpost_trial, logprior_trial, logliks_trial, derived = self.logposterior(
            trial)
        accept = self.metropolis_accept(logpost_trial,
                                        -self.current_point["minuslogpost"])
        self.process_accept_or_reject(accept, trial, derived, logpost_trial,
                                      logprior_trial, logliks_trial)
        return accept

    def get_new_sample_dragging(self):
        """
        Draws a new trial point in the slow subspace, and gets the corresponding trial
        in the fast subspace by "dragging" the fast parameters.
        Finally, checks the acceptance of the total step using the "dragging" pdf:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        # Prepare starting and ending points *in the SLOW subspace*
        # "start_" and "end_" mean here the extremes in the SLOW subspace
        start_slow_point = self.current_point[
            self.parametrization.sampled_params()]
        start_slow_logpost = -self.current_point["minuslogpost"]
        end_slow_point = deepcopy(start_slow_point)
        self.proposer.get_proposal_slow(end_slow_point)
        self.log.debug("Proposed slow end-point: %r", end_slow_point)
        # Save derived paramters of delta_slow jump, in case I reject all the dragging
        # steps but accept the move in the slow direction only
        end_slow_logpost, end_slow_logprior, end_slow_logliks, derived = (
            self.logposterior(end_slow_point))
        if end_slow_logpost == -np.inf:
            self.current_point.increase_weight(1)
            return False
        # trackers of the dragging
        current_start_point = start_slow_point
        current_end_point = end_slow_point
        current_start_logpost = start_slow_logpost
        current_end_logpost = end_slow_logpost
        current_end_logprior = end_slow_logprior
        current_end_logliks = end_slow_logliks
        # accumulators for the "dragging" probabilities to be metropolist-tested
        # at the end of the interpolation
        start_drag_logpost_acc = start_slow_logpost
        end_drag_logpost_acc = end_slow_logpost
        # start dragging
        for i_step in range(1, 1 + self.drag_interp_steps):
            self.log.debug("Dragging step: %d", i_step)
            # take a step in the fast direction in both slow extremes
            delta_fast = np.zeros(len(current_start_point))
            self.proposer.get_proposal_fast(delta_fast)
            self.log.debug("Proposed fast step delta: %r", delta_fast)
            proposal_start_point = deepcopy(current_start_point)
            proposal_start_point += delta_fast
            proposal_end_point = deepcopy(current_end_point)
            proposal_end_point += delta_fast
            # get the new extremes for the interpolated probability
            # (reject if any of them = -inf; avoid evaluating both if just one fails)
            # Force the computation of the (slow blocks) derived params at the starting
            # point, but discard them, since they contain the starting point's fast ones,
            # not used later -- save the end point's ones.
            proposal_start_logpost = self.logposterior(proposal_start_point)[0]
            proposal_end_logpost, proposal_end_logprior, \
                proposal_end_logliks, derived_proposal_end = (
                    self.logposterior(proposal_end_point)
                    if proposal_start_logpost > -np.inf
                    else (-np.inf, None, [], []))
            if proposal_start_logpost > -np.inf and proposal_end_logpost > -np.inf:
                # create the interpolated probability and do a Metropolis test
                frac = i_step / (1 + self.drag_interp_steps)
                proposal_interp_logpost = (
                    (1 - frac) * proposal_start_logpost +
                    frac * proposal_end_logpost)
                current_interp_logpost = ((1 - frac) * current_start_logpost +
                                          frac * current_end_logpost)
                accept_drag = self.metropolis_accept(proposal_interp_logpost,
                                                     current_interp_logpost)
            else:
                accept_drag = False
            self.log.debug("Dragging step: %s",
                           ("accepted" if accept_drag else "rejected"))
            # If the dragging step was accepted, do the drag
            if accept_drag:
                current_start_point = proposal_start_point
                current_start_logpost = proposal_start_logpost
                current_end_point = proposal_end_point
                current_end_logpost = proposal_end_logpost
                current_end_logprior = proposal_end_logprior
                current_end_logliks = proposal_end_logliks
                derived = derived_proposal_end
            # In any case, update the dragging probability for the final metropolis test
            start_drag_logpost_acc += current_start_logpost
            end_drag_logpost_acc += current_end_logpost
        # Test for the TOTAL step
        accept = self.metropolis_accept(
            end_drag_logpost_acc / self.drag_interp_steps,
            start_drag_logpost_acc / self.drag_interp_steps)
        self.process_accept_or_reject(accept, current_end_point, derived,
                                      current_end_logpost,
                                      current_end_logprior,
                                      current_end_logliks)
        self.log.debug("TOTAL step: %s",
                       ("accepted" if accept else "rejected"))
        return accept

    def metropolis_accept(self, logp_trial, logp_current):
        """
        Symmetric-proposal Metropolis-Hastings test.

        Returns:
           ``True`` or ``False``.
        """
        if logp_trial == -np.inf:
            return False
        elif logp_trial > logp_current:
            return True
        else:
            return np.random.exponential() > (logp_current - logp_trial)

    def process_accept_or_reject(self,
                                 accept_state,
                                 trial=None,
                                 derived=None,
                                 logpost_trial=None,
                                 logprior_trial=None,
                                 logliks_trial=None):
        """Processes the acceptance/rejection of the new point."""
        if accept_state:
            # add the old point to the collection (if not burning or initial point)
            if self.burn_in_left <= 0:
                self.current_point.add_to_collection(self.collection)
                self.log.debug("New sample, #%d: \n   %r", self.n(),
                               self.current_point)
                if self.n() % self.output_every == 0:
                    self.collection.out_update()
            else:
                self.burn_in_left -= 1
                self.log.debug("Burn-in sample:\n   %r", self.current_point)
                if self.burn_in_left == 0:
                    self.log.info(
                        "Finished burn-in phase: discarded %d accepted steps.",
                        self.burn_in)
            # set the new point as the current one, with weight one
            self.current_point.add(trial,
                                   derived=derived,
                                   weight=1,
                                   logpost=logpost_trial,
                                   logprior=logprior_trial,
                                   logliks=logliks_trial)
        else:  # not accepted
            self.current_point.increase_weight(1)
            # Failure criterion: chain stuck!
            if self.current_point[_weight] > self.max_tries:
                self.collection.out_update()
                self.log.error(
                    "The chain has been stuck for %d attempts. "
                    "Stopping sampling. If this has happened often, try improving your"
                    " reference point/distribution.", self.max_tries)
                raise HandledException

    # Functions to check convergence and learn the covariance of the proposal distribution

    def check_all_ready(self):
        """
        Checks if the chain(s) is(/are) ready to check convergence and, if requested,
        learn a new covariance matrix for the proposal distribution.
        """
        msg_ready = (
            ("Ready to" if get_mpi() or self.learn_proposal else "") +
            (" check convergence" if get_mpi() else "") +
            (" and" if get_mpi() and self.learn_proposal else "") +
            (" learn a new proposal covmat" if self.learn_proposal else ""))
        # If *just* (weight==1) got ready to check+learn
        if (self.n() > 0 and self.current_point[_weight] == 1
                and not (self.n() %
                         (self.check_every_dimension_times * self.n_slow))):
            self.log.info("Checkpoint: %d samples accepted.", self.n())
            # If not MPI, we are ready
            if not get_mpi():
                if msg_ready:
                    self.log.info(msg_ready)
                return True
            # If MPI, tell the rest that we are ready -- we use a "gather"
            # ("reduce" was problematic), but we are in practice just pinging
            if not hasattr(self, "req"):  # just once!
                self.all_ready = np.empty(get_mpi_size())
                self.req = get_mpi_comm().Iallgather(np.array([1.]),
                                                     self.all_ready)
                self.log.info(msg_ready + " (waiting for the rest...)")
        # If all processes are ready to learn (= communication finished)
        if self.req.Test() if hasattr(self, "req") else False:
            # Sanity check: actually all processes have finished
            assert np.all(self.all_ready == 1), (
                "This should not happen! Notify the developers. (Got %r)",
                self.all_ready)
            if get_mpi_rank() == 0:
                self.log.info("All chains are r" + msg_ready[1:])
            delattr(self, "req")
            # Just in case, a barrier here
            get_mpi_comm().barrier()
            return True
        return False

    def check_convergence_and_learn_proposal(self):
        """
        Checks the convergence of the sampling process (MPI only), and, if requested,
        learns a new covariance matrix for the proposal distribution from the covariance
        of the last samples.
        """
        # Compute and gather means, covs and CL intervals of last half of chains
        mean = self.collection.mean(first=int(self.n() / 2))
        cov = self.collection.cov(first=int(self.n() / 2))
        # No logging of warnings temporarily, so getdist won't complain innecessarily
        logging.disable(logging.WARNING)
        mcsamples = self.collection.sampled_to_getdist_mcsamples(
            first=int(self.n() / 2))
        logging.disable(logging.NOTSET)
        bound = np.array([[
            mcsamples.confidence(i,
                                 limfrac=self.Rminus1_cl_level / 2.,
                                 upper=which) for i in range(self.prior.d())
        ] for which in [False, True]]).T
        Ns, means, covs, bounds = map(
            lambda x: np.array((get_mpi_comm().gather(x)
                                if get_mpi() else [x])),
            [self.n(), mean, cov, bound])
        # Compute convergence diagnostics
        if get_mpi():
            if get_mpi_rank() == 0:
                # "Within" or "W" term -- our "units" for assessing convergence
                # and our prospective new covariance matrix
                mean_of_covs = np.average(covs, weights=Ns, axis=0)
                # "Between" or "B" term
                # We don't weight with the number of samples in the chains here:
                # shorter chains will likely be outliers, and we want to notice them
                cov_of_means = np.cov(means.T)  # , fweights=Ns)
                # For numerical stability, we turn mean_of_covs into correlation matrix:
                #   rho = (diag(Sigma))^(-1/2) * Sigma * (diag(Sigma))^(-1/2)
                # and apply the same transformation to the mean of covs (same eigenvals!)
                diagSinvsqrt = np.diag(np.power(np.diag(cov_of_means), -0.5))
                corr_of_means = diagSinvsqrt.dot(cov_of_means).dot(
                    diagSinvsqrt)
                norm_mean_of_covs = diagSinvsqrt.dot(mean_of_covs).dot(
                    diagSinvsqrt)
                # Cholesky of (normalized) mean of covs and eigvals of Linv*cov_of_means*L
                try:
                    L = np.linalg.cholesky(norm_mean_of_covs)
                except np.linalg.LinAlgError:
                    self.log.warning(
                        "Negative covariance eigenvectors. "
                        "This may mean that the covariance of the samples does not "
                        "contain enough information at this point. "
                        "Skipping this checkpoint")
                    success = False
                else:
                    Linv = np.linalg.inv(L)
                    eigvals = np.linalg.eigvalsh(
                        Linv.dot(corr_of_means).dot(Linv.T))
                    Rminus1 = max(np.abs(eigvals))
                    # For real square matrices, a possible def of the cond number is:
                    condition_number = Rminus1 / min(np.abs(eigvals))
                    self.log.debug("Condition number = %g", condition_number)
                    self.log.debug("Eigenvalues = %r", eigvals)
                    self.log.info(
                        "Convergence of means: R-1 = %f after %d samples",
                        Rminus1, self.n())
                    success = True
                    # Have we converged in means?
                    # (criterion must be fulfilled twice in a row)
                    if (max(Rminus1, getattr(self, "Rminus1_last", np.inf)) <
                            self.Rminus1_stop):
                        # Check the convergence of the bounds of the confidence intervals
                        # Same as R-1, but with the rms deviation from the mean bound
                        # in units of the mean standard deviation of the chains
                        Rminus1_cl = (np.std(bounds, axis=0).T /
                                      np.sqrt(np.diag(mean_of_covs)))
                        self.log.debug("normalized std's of bounds = %r",
                                       Rminus1_cl)
                        self.log.info(
                            "Convergence of bounds: R-1 = %f after %d samples",
                            np.max(Rminus1_cl), self.n())
                        if np.max(Rminus1_cl) < self.Rminus1_cl_stop:
                            self.converged = True
                            self.log.info("The run has converged!")
            # Broadcast and save the convergence status and the last R-1 of means
            success = get_mpi_comm().bcast(
                (success if not get_mpi_rank() else None), root=0)
            if success:
                self.Rminus1_last = get_mpi_comm().bcast(
                    (Rminus1 if not get_mpi_rank() else None), root=0)
                self.converged = get_mpi_comm().bcast(
                    (self.converged if not get_mpi_rank() else None), root=0)
        else:  # No MPI
            pass
        # Do we want to learn a better proposal pdf?
        if self.learn_proposal and not self.converged:
            # update iff (not MPI, or MPI and "good" Rminus1)
            if get_mpi():
                good_Rminus1 = (self.learn_proposal_Rminus1_max >
                                self.Rminus1_last >
                                self.learn_proposal_Rminus1_min)
                if not good_Rminus1:
                    if not get_mpi_rank():
                        self.log.info("Bad convergence statistics: "
                                      "waiting until the next checkpoint.")
                    return
            if get_mpi():
                if get_mpi_rank():
                    mean_of_covs = np.empty((self.prior.d(), self.prior.d()))
                get_mpi_comm().Bcast(mean_of_covs, root=0)
            elif not get_mpi():
                mean_of_covs = covs[0]
            self.proposer.set_covariance(mean_of_covs)
            if not get_mpi_rank():
                self.log.info("Updated covariance matrix of proposal pdf.")
                self.log.debug("%r", mean_of_covs)

    # Finally: returning the computed products ###########################################

    def products(self):
        """
        Auxiliary function to define what should be returned in a scripted call.

        Returns:
           The sample ``Collection`` containing the accepted steps.
        """
        return {"sample": self.collection}