def __init__(self, info_sampler: SamplerDict, model: Model, output=Optional[Output], packages_path: Optional[str] = None, name: Optional[str] = None): """ Actual initialization of the class. Loads the default and input information and call the custom ``initialize`` method. [Do not modify this one.] """ self._model = model self._output = output self._updated_info = deepcopy_where_possible(info_sampler) super().__init__(info_sampler, packages_path=packages_path, name=name, initialize=False, standalone=False) if not model.parameterization.sampled_params(): self.mpi_warning("No sampled parameters requested! " "This will fail for non-mock samplers.") # Load checkpoint info, if resuming if self.output.is_resuming() and not isinstance(self, Minimizer): checkpoint_info = None if mpi.is_main_process(): try: checkpoint_info = yaml_load_file( self.checkpoint_filename()) if self.get_name() not in checkpoint_info["sampler"]: raise LoggedError( self.log, "Checkpoint file found at '%s' " "but it corresponds to a different sampler.", self.checkpoint_filename()) except (IOError, TypeError): pass checkpoint_info = mpi.share_mpi(checkpoint_info) if checkpoint_info: self.set_checkpoint_info(checkpoint_info) self.mpi_info("Resuming from previous sample!") elif not isinstance(self, Minimizer) and mpi.is_main_process(): try: output.delete_file_or_folder(self.checkpoint_filename()) output.delete_file_or_folder(self.progress_filename()) except (OSError, TypeError): pass self._set_rng() self.initialize() model.set_cache_size(self._get_requested_cache_size()) # Add to the updated info some values which are # only available after initialisation self._updated_info["version"] = self.get_version()
def run(info): assert hasattr(info, "keys"), ( "The first argument must be a dictionary with the info needed for the run. " "If you were trying to pass the name of an input file instead, " "load it first with 'cobaya.input.load_input', " "or, if you were passing a yaml string, load it with 'cobaya.yaml.yaml_load'." ) # Configure the logger ASAP # Just a dummy import before configuring the logger, until I fix root/individual level import getdist logger_setup(info.get(_debug), info.get(_debug_file)) import logging # Initialize output, if required output = Output(output_prefix=info.get(_output_prefix), resume=info.get(_resume), force_output=info.pop(_force, None)) # Create the full input information, including defaults for each module. full_info = get_full_info(info) if output: full_info[_output_prefix] = output.updated_output_prefix() full_info[_resume] = output.is_resuming() if logging.root.getEffectiveLevel() <= logging.DEBUG: # Don't dump unless we are doing output, just in case something not serializable # May be fixed in the future if we find a way to serialize external functions if info.get(_output_prefix) and am_single_or_primary_process(): logging.getLogger(__name__.split(".")[-1]).info( "Input info updated with defaults (dumped to YAML):\n%s", yaml_dump(full_info)) # TO BE DEPRECATED IN >1.2!!! ##################### _force_reproducible = "force_reproducible" if _force_reproducible in info: info.pop(_force_reproducible) logging.getLogger(__name__.split(".")[-1]).warn( "Option '%s' is no longer necessary. Please remove it!" % _force_reproducible) # CHECK THAT THIS WARNING WORKS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ################################################### # We dump the info now, before modules initialization, lest it is accidentally modified # If resuming a sample, it checks that old and new infos are consistent output.dump_info(info, full_info) # Initialize the posterior and the sampler with Model(full_info[_params], full_info[_likelihood], full_info.get(_prior), full_info.get(_theory), modules=info.get(_path_install), timing=full_info.get(_timing), allow_renames=False) as model: with Sampler(full_info[_sampler], model, output, resume=full_info.get(_resume), modules=info.get(_path_install)) as sampler: sampler.run() # For scripted calls return deepcopy(full_info), sampler.products()
def get_sampler(info_sampler: SamplersDict, model: Model, output: Optional[Output] = None, packages_path: Optional[str] = None) -> 'Sampler': assert isinstance(info_sampler, Mapping), ( "The first argument must be a dictionary with the info needed for the sampler. " "If you were trying to pass the name of an input file instead, " "load it first with 'cobaya.input.load_input', " "or, if you were passing a yaml string, load it with 'cobaya.yaml.yaml_load'." ) logger_sampler = get_logger(__name__) info_sampler = deepcopy_where_possible(info_sampler) if output is None: output = OutputDummy() # Check and update info check_sane_info_sampler(info_sampler) updated_info_sampler = update_info({"sampler": info_sampler })["sampler"] # type: ignore if is_debug(logger_sampler): logger_sampler.debug( "Input info updated with defaults (dumped to YAML):\n%s", yaml_dump(updated_info_sampler)) # Get sampler class & check resume/force compatibility sampler_name, sampler_class = get_sampler_name_and_class( updated_info_sampler, logger=logger_sampler) check_sampler_info((output.reload_updated_info(use_cache=True) or {}).get("sampler"), updated_info_sampler, is_resuming=output.is_resuming()) # Check if resumable run sampler_class.check_force_resume(output, info=updated_info_sampler[sampler_name]) # Instantiate the sampler sampler_instance = sampler_class(updated_info_sampler[sampler_name], model, output, packages_path=packages_path) # If output, dump updated if output: to_dump = model.info() to_dump["sampler"] = {sampler_name: sampler_instance.info()} to_dump["output"] = os.path.join(output.folder, output.prefix) output.check_and_dump_info(None, to_dump, check_compatible=False) return sampler_instance
def post(info_or_yaml_or_file: Union[InputDict, str, os.PathLike], sample: Union[SampleCollection, List[SampleCollection], None] = None ) -> PostTuple: info = load_input_dict(info_or_yaml_or_file) logger_setup(info.get("debug"), info.get("debug_file")) log = get_logger(__name__) # MARKED FOR DEPRECATION IN v3.0 if info.get("modules"): raise LoggedError(log, "The input field 'modules' has been deprecated." "Please use instead %r", packages_path_input) # END OF DEPRECATION BLOCK info_post: PostDict = info.get("post") or {} if not info_post: raise LoggedError(log, "No 'post' block given. Nothing to do!") if mpi.is_main_process() and info.get("resume"): log.warning("Resuming not implemented for post-processing. Re-starting.") if not info.get("output") and info_post.get("output") \ and not info.get("params"): raise LoggedError(log, "The input dictionary must have be a full option " "dictionary, or have an existing 'output' root to load " "previous settings from ('output' to read from is in the " "main block not under 'post'). ") # 1. Load existing sample output_in = get_output(prefix=info.get("output")) if output_in: info_in = output_in.load_updated_info() or update_info(info) else: info_in = update_info(info) params_in: ExpandedParamsDict = info_in["params"] # type: ignore dummy_model_in = DummyModel(params_in, info_in.get("likelihood", {}), info_in.get("prior")) in_collections = [] thin = info_post.get("thin", 1) skip = info_post.get("skip", 0) if info.get('thin') is not None or info.get('skip') is not None: # type: ignore raise LoggedError(log, "'thin' and 'skip' should be " "parameters of the 'post' block") if sample: # If MPI, assume for each MPI process post is passed in the list of # collections that should be processed by that process # (e.g. single chain output from sampler) if isinstance(sample, SampleCollection): in_collections = [sample] else: in_collections = sample for i, collection in enumerate(in_collections): if skip: if 0 < skip < 1: skip = int(round(skip * len(collection))) collection = collection.filtered_copy(slice(skip, None)) if thin != 1: collection = collection.thin_samples(thin) in_collections[i] = collection elif output_in: files = output_in.find_collections() numbered = files if not numbered: # look for un-numbered output files files = output_in.find_collections(name=False) if files: if mpi.size() > len(files): raise LoggedError(log, "Number of MPI processes (%s) is larger than " "the number of sample files (%s)", mpi.size(), len(files)) for num in range(mpi.rank(), len(files), mpi.size()): in_collections += [SampleCollection( dummy_model_in, output_in, onload_thin=thin, onload_skip=skip, load=True, file_name=files[num], name=str(num + 1) if numbered else "")] else: raise LoggedError(log, "No samples found for the input model with prefix %s", os.path.join(output_in.folder, output_in.prefix)) else: raise LoggedError(log, "No output from where to load from, " "nor input collections given.") if any(len(c) <= 1 for c in in_collections): raise LoggedError( log, "Not enough samples for post-processing. Try using a larger sample, " "or skipping or thinning less.") mpi.sync_processes() log.info("Will process %d sample points.", sum(len(c) for c in in_collections)) # 2. Compare old and new info: determine what to do add = info_post.get("add") or {} if "remove" in add: raise LoggedError(log, "remove block should be under 'post', not 'add'") remove = info_post.get("remove") or {} # Add a dummy 'one' likelihood, to absorb unused parameters if not add.get("likelihood"): add["likelihood"] = {} add["likelihood"]["one"] = None # Expand the "add" info, but don't add new default sampled parameters orig_params = set(add.get("params") or []) add = update_info(add, add_aggr_chi2=False) add_params: ExpandedParamsDict = add["params"] # type: ignore for p in set(add_params) - orig_params: if p in params_in: add_params.pop(p) # 2.1 Adding/removing derived parameters and changes in priors of sampled parameters out_combined_params = deepcopy_where_possible(params_in) remove_params = list(str_to_list(remove.get("params")) or []) for p in remove_params: pinfo = params_in.get(p) if pinfo is None or not is_derived_param(pinfo): raise LoggedError( log, "You tried to remove parameter '%s', which is not a derived parameter. " "Only derived parameters can be removed during post-processing.", p) out_combined_params.pop(p) # Force recomputation of aggregated chi2 for p in list(out_combined_params): if p.startswith(get_chi2_name("")): out_combined_params.pop(p) prior_recompute_1d = False for p, pinfo in add_params.items(): pinfo_in = params_in.get(p) if is_sampled_param(pinfo): if not is_sampled_param(pinfo_in): # No added sampled parameters (de-marginalisation not implemented) if pinfo_in is None: raise LoggedError( log, "You added a new sampled parameter %r (maybe accidentally " "by adding a new likelihood that depends on it). " "Adding new sampled parameters is not possible. Try fixing " "it to some value.", p) else: raise LoggedError( log, "You tried to change the prior of parameter '%s', " "but it was not a sampled parameter. " "To change that prior, you need to define as an external one.", p) # recompute prior if potentially changed sampled parameter priors prior_recompute_1d = True elif is_derived_param(pinfo): if p in out_combined_params: raise LoggedError( log, "You tried to add derived parameter '%s', which is already " "present. To force its recomputation, 'remove' it too.", p) elif is_fixed_or_function_param(pinfo): # Only one possibility left "fixed" parameter that was not present before: # input of new likelihood, or just an argument for dynamical derived (dropped) if pinfo_in and p in params_in and pinfo["value"] != pinfo_in.get("value"): raise LoggedError( log, "You tried to add a fixed parameter '%s: %r' that was already present" " but had a different value or was not fixed. This is not allowed. " "The old info of the parameter was '%s: %r'", p, dict(pinfo), p, dict(pinfo_in)) elif not pinfo_in: # OK as long as we have known value for it raise LoggedError(log, "Parameter %s no known value. ", p) out_combined_params[p] = pinfo out_combined: InputDict = {"params": out_combined_params} # type: ignore # Turn the rest of *derived* parameters into constants, # so that the likelihoods do not try to recompute them # But be careful to exclude *input* params that have a "derived: True" value # (which in "updated info" turns into "derived: 'lambda [x]: [x]'") # Don't assign to derived parameters to theories, only likelihoods, so they can be # recomputed if needed. If the theory does not need to be computed, it doesn't matter # if it is already assigned parameters in the usual way; likelihoods can get # the required derived parameters from the stored sample derived parameter inputs. out_params_with_computed = deepcopy_where_possible(out_combined_params) dropped_theory = set() for p, pinfo in out_params_with_computed.items(): if (is_derived_param(pinfo) and "value" not in pinfo and p not in add_params): out_params_with_computed[p] = {"value": np.nan} dropped_theory.add(p) # 2.2 Manage adding/removing priors and likelihoods warn_remove = False kind: ModelBlock for kind in ("prior", "likelihood", "theory"): out_combined[kind] = deepcopy_where_possible(info_in.get(kind)) or {} for remove_item in str_to_list(remove.get(kind)) or []: try: out_combined[kind].pop(remove_item, None) if remove_item not in (add.get(kind) or []) and kind != "theory": warn_remove = True except ValueError: raise LoggedError( log, "Trying to remove %s '%s', but it is not present. " "Existing ones: %r", kind, remove_item, list(out_combined[kind])) if kind != "theory" and kind in add: dups = set(add.get(kind) or []).intersection(out_combined[kind]) - {"one"} if dups: raise LoggedError( log, "You have added %s '%s', which was already present. If you " "want to force its recomputation, you must also 'remove' it.", kind, dups) out_combined[kind].update(add[kind]) if warn_remove and mpi.is_main_process(): log.warning("You are removing a prior or likelihood pdf. " "Notice that if the resulting posterior is much wider " "than the original one, or displaced enough, " "it is probably safer to explore it directly.") mlprior_names_add = minuslogprior_names(add.get("prior") or []) chi2_names_add = [get_chi2_name(name) for name in add["likelihood"] if name != "one"] out_combined["likelihood"].pop("one", None) add_theory = add.get("theory") if add_theory: if len(add["likelihood"]) == 1 and not any( is_derived_param(pinfo) for pinfo in add_params.values()): log.warning("You are adding a theory, but this does not force recomputation " "of any likelihood or derived parameters unless explicitly " "removed+added.") # Inherit from the original chain (input|output_params, renames, etc) added_theory = add_theory.copy() for theory, theory_info in out_combined["theory"].items(): if theory in list(added_theory): out_combined["theory"][theory] = \ recursive_update(theory_info, added_theory.pop(theory)) out_combined["theory"].update(added_theory) # Prepare recomputation of aggregated chi2 # (they need to be recomputed by hand, because auto-computation won't pick up # old likelihoods for a given type) all_types = {like: str_to_list(opts.get("type") or []) for like, opts in out_combined["likelihood"].items()} types = set(chain(*all_types.values())) inv_types = {t: [like for like, like_types in all_types.items() if t in like_types] for t in sorted(types)} add_aggregated_chi2_params(out_combined_params, types) # 3. Create output collection # Use default prefix if it exists. If it does not, produce no output by default. # {post: {output: None}} suppresses output, and if it's a string, updates it. out_prefix = info_post.get("output", info.get("output")) if out_prefix: suffix = info_post.get("suffix") if not suffix: raise LoggedError(log, "You need to provide a '%s' for your output chains.", "suffix") out_prefix += separator_files + "post" + separator_files + suffix output_out = get_output(prefix=out_prefix, force=info.get("force")) output_out.set_lock() if output_out and not output_out.force and output_out.find_collections(): raise LoggedError(log, "Found existing post-processing output with prefix %r. " "Delete it manually or re-run with `force: True` " "(or `-f`, `--force` from the shell).", out_prefix) elif output_out and output_out.force and mpi.is_main_process(): output_out.delete_infos() for _file in output_out.find_collections(): output_out.delete_file_or_folder(_file) info_out = deepcopy_where_possible(info) info_post = info_post.copy() info_out["post"] = info_post # Updated with input info and extended (updated) add info info_out.update(info_in) # type: ignore info_post["add"] = add dummy_model_out = DummyModel(out_combined_params, out_combined["likelihood"], info_prior=out_combined["prior"]) out_func_parameterization = Parameterization(out_params_with_computed) # TODO: check allow_renames=False? model_add = Model(out_params_with_computed, add["likelihood"], info_prior=add.get("prior"), info_theory=out_combined["theory"], packages_path=(info_post.get(packages_path_input) or info.get(packages_path_input)), allow_renames=False, post=True, stop_at_error=info.get('stop_at_error', False), skip_unused_theories=True, dropped_theory_params=dropped_theory) # Remove auxiliary "one" before dumping -- 'add' *is* info_out["post"]["add"] add["likelihood"].pop("one") out_collections = [SampleCollection(dummy_model_out, output_out, name=c.name, cache_size=OutputOptions.default_post_cache_size) for c in in_collections] # TODO: should maybe add skip/thin to out_combined, so can tell post-processed? output_out.check_and_dump_info(info_out, out_combined, check_compatible=False) collection_in = in_collections[0] collection_out = out_collections[0] last_percent = None known_constants = dummy_model_out.parameterization.constant_params() known_constants.update(dummy_model_in.parameterization.constant_params()) missing_params = dummy_model_in.parameterization.sampled_params().keys() - set( collection_in.columns) if missing_params: raise LoggedError(log, "Input samples do not contain expected sampled parameter " "values: %s", missing_params) missing_priors = set(name for name in collection_out.minuslogprior_names if name not in mlprior_names_add and name not in collection_in.columns) if _minuslogprior_1d_name in missing_priors: prior_recompute_1d = True if prior_recompute_1d: missing_priors.discard(_minuslogprior_1d_name) mlprior_names_add.insert(0, _minuslogprior_1d_name) prior_regenerate: Optional[Prior] if missing_priors and "prior" in info_in: # in case there are input priors that are not stored in input samples # e.g. when postprocessing GetDist/CosmoMC-format chains in_names = minuslogprior_names(info_in["prior"]) info_prior = {piname: inf for (piname, inf), in_name in zip(info_in["prior"].items(), in_names) if in_name in missing_priors} regenerated_prior_names = minuslogprior_names(info_prior) missing_priors.difference_update(regenerated_prior_names) prior_regenerate = Prior(dummy_model_in.parameterization, info_prior) else: prior_regenerate = None regenerated_prior_names = None if missing_priors: raise LoggedError(log, "Missing priors: %s", missing_priors) mpi.sync_processes() output_in.check_lock() # 4. Main loop! Loop over input samples and adjust as required. if mpi.is_main_process(): log.info("Running post-processing...") difflogmax: Optional[float] = None to_do = sum(len(c) for c in in_collections) weights = [] done = 0 last_dump_time = time.time() for collection_in, collection_out in zip(in_collections, out_collections): importance_weights = [] def set_difflogmax(): nonlocal difflogmax difflog = (collection_in[OutPar.minuslogpost].to_numpy( dtype=np.float64)[:len(collection_out)] - collection_out[OutPar.minuslogpost].to_numpy(dtype=np.float64)) difflogmax = np.max(difflog) if abs(difflogmax) < 1: difflogmax = 0 # keep simple when e.g. very similar log.debug("difflogmax: %g", difflogmax) if mpi.more_than_one_process(): difflogmax = max(mpi.allgather(difflogmax)) if mpi.is_main_process(): log.debug("Set difflogmax: %g", difflogmax) _weights = np.exp(difflog - difflogmax) importance_weights.extend(_weights) collection_out.reweight(_weights) for i, point in collection_in.data.iterrows(): all_params = point.to_dict() for p in remove_params: all_params.pop(p, None) log.debug("Point: %r", point) sampled = np.array([all_params[param] for param in dummy_model_in.parameterization.sampled_params()]) all_params = out_func_parameterization.to_input(all_params).copy() # Add/remove priors if prior_recompute_1d: priors_add = [model_add.prior.logps_internal(sampled)] if priors_add[0] == -np.inf: continue else: priors_add = [] if model_add.prior.external: priors_add.extend(model_add.prior.logps_external(all_params)) logpriors_add = dict(zip(mlprior_names_add, priors_add)) logpriors_new = [logpriors_add.get(name, - point.get(name, 0)) for name in collection_out.minuslogprior_names] if prior_regenerate: regenerated = dict(zip(regenerated_prior_names, prior_regenerate.logps_external(all_params))) for _i, name in enumerate(collection_out.minuslogprior_names): if name in regenerated_prior_names: logpriors_new[_i] = regenerated[name] if is_debug(log): log.debug("New set of priors: %r", dict(zip(dummy_model_out.prior, logpriors_new))) if -np.inf in logpriors_new: continue # Add/remove likelihoods and/or (re-)calculate derived parameters loglikes_add, output_derived = model_add._loglikes_input_params( all_params, return_output_params=True) loglikes_add = dict(zip(chi2_names_add, loglikes_add)) output_derived = dict(zip(model_add.output_params, output_derived)) loglikes_new = [loglikes_add.get(name, -0.5 * point.get(name, 0)) for name in collection_out.chi2_names] if is_debug(log): log.debug("New set of likelihoods: %r", dict(zip(dummy_model_out.likelihood, loglikes_new))) if output_derived: log.debug("New set of derived parameters: %r", output_derived) if -np.inf in loglikes_new: continue all_params.update(output_derived) all_params.update(out_func_parameterization.to_derived(all_params)) derived = {param: all_params.get(param) for param in dummy_model_out.parameterization.derived_params()} # We need to recompute the aggregated chi2 by hand for type_, likes in inv_types.items(): derived[get_chi2_name(type_)] = sum( -2 * lvalue for lname, lvalue in zip(collection_out.chi2_names, loglikes_new) if undo_chi2_name(lname) in likes) if is_debug(log): log.debug("New derived parameters: %r", {p: derived[p] for p in dummy_model_out.parameterization.derived_params() if p in add["params"]}) # Save to the collection (keep old weight for now) weight = point.get(OutPar.weight) mpi.check_errors() if difflogmax is None and i > OutputOptions.reweight_after and \ time.time() - last_dump_time > OutputOptions.output_inteveral_s / 2: set_difflogmax() collection_out.out_update() if difflogmax is not None: logpost_new = sum(logpriors_new) + sum(loglikes_new) importance_weight = np.exp(logpost_new + point.get(OutPar.minuslogpost) - difflogmax) weight = weight * importance_weight importance_weights.append(importance_weight) if time.time() - last_dump_time > OutputOptions.output_inteveral_s: collection_out.out_update() last_dump_time = time.time() if weight > 0: collection_out.add(sampled, derived=derived.values(), weight=weight, logpriors=logpriors_new, loglikes=loglikes_new) # Display progress percent = int(np.round((i + done) / to_do * 100)) if percent != last_percent and not percent % 5: last_percent = percent progress_bar(log, percent, " (%d/%d)" % (i + done, to_do)) if difflogmax is None: set_difflogmax() if not collection_out.data.last_valid_index(): raise LoggedError( log, "No elements in the final sample. Possible causes: " "added a prior or likelihood valued zero over the full sampled " "domain, or the computation of the theory failed everywhere, etc.") collection_out.out_update() weights.append(np.array(importance_weights)) done += len(collection_in) assert difflogmax is not None points = 0 tot_weight = 0 min_weight = np.inf max_weight = -np.inf max_output_weight = -np.inf sum_w2 = 0 points_removed = 0 for collection_in, collection_out, importance_weights in zip(in_collections, out_collections, weights): output_weights = collection_out[OutPar.weight] points += len(collection_out) tot_weight += np.sum(output_weights) points_removed += len(importance_weights) - len(output_weights) min_weight = min(min_weight, np.min(importance_weights)) max_weight = max(max_weight, np.max(importance_weights)) max_output_weight = max(max_output_weight, np.max(output_weights)) sum_w2 += np.dot(output_weights, output_weights) (tot_weights, min_weights, max_weights, max_output_weights, sum_w2s, points_s, points_removed_s) = mpi.zip_gather( [tot_weight, min_weight, max_weight, max_output_weight, sum_w2, points, points_removed]) if mpi.is_main_process(): output_out.clear_lock() log.info("Finished! Final number of distinct sample points: %s", sum(points_s)) log.info("Importance weight range: %.4g -- %.4g", min(min_weights), max(max_weights)) if sum(points_removed_s): log.info("Points deleted due to zero weight: %s", sum(points_removed_s)) log.info("Effective number of single samples if independent (sum w)/max(w): %s", int(sum(tot_weights) / max(max_output_weights))) log.info( "Effective number of weighted samples if independent (sum w)^2/sum(w^2): " "%s", int(sum(tot_weights) ** 2 / sum(sum_w2s))) products: PostResultDict = {"sample": value_or_list(out_collections), "stats": {'min_importance_weight': (min(min_weights) / max(max_weights)), 'points_removed': sum(points_removed_s), 'tot_weight': sum(tot_weights), 'max_weight': max(max_output_weights), 'sum_w2': sum(sum_w2s), 'points': sum(points_s)}, "logpost_weight_offset": difflogmax, "weights": value_or_list(weights)} return PostTuple(info=out_combined, products=products)
def post(info, sample=None): logger_setup(info.get(_debug), info.get(_debug_file)) log = logging.getLogger(__name__.split(".")[-1]) # MARKED FOR DEPRECATION IN v3.0 # BEHAVIOUR TO BE REPLACED BY ERROR: check_deprecated_modules_path(info) # END OF DEPRECATION BLOCK try: info_post = info[_post] except KeyError: raise LoggedError(log, "No 'post' block given. Nothing to do!") if get_mpi_rank(): log.warning( "Post-processing is not yet MPI-aware. Doing nothing for rank > 1 processes.") return if info.get(_resume): log.warning("Resuming not implemented for post-processing. Re-starting.") # 1. Load existing sample output_in = get_output(output_prefix=info.get(_output_prefix)) if output_in: try: info_in = output_in.reload_updated_info() except FileNotFoundError: raise LoggedError(log, "Error loading input model: " "could not find input info at %s", output_in.file_updated) else: info_in = deepcopy_where_possible(info) dummy_model_in = DummyModel(info_in[_params], info_in[kinds.likelihood], info_in.get(_prior, None)) if output_in: if not output_in.find_collections(): raise LoggedError(log, "No samples found for the input model with prefix %s", os.path.join(output_in.folder, output_in.prefix)) collection_in = output_in.load_collections( dummy_model_in, skip=info_post.get("skip", 0), thin=info_post.get("thin", 1), concatenate=True) elif sample: if isinstance(sample, Collection): sample = [sample] collection_in = deepcopy(sample[0]) for s in sample[1:]: try: collection_in.append(s) except: raise LoggedError(log, "Failed to load some of the input samples.") else: raise LoggedError(log, "Not output from where to load from or input collections given.") log.info("Will process %d samples.", len(collection_in)) if len(collection_in) <= 1: raise LoggedError( log, "Not enough samples for post-processing. Try using a larger sample, " "or skipping or thinning less.") # 2. Compare old and new info: determine what to do add = info_post.get(_post_add, {}) or {} remove = info_post.get(_post_remove, {}) # Add a dummy 'one' likelihood, to absorb unused parameters if not add.get(kinds.likelihood): add[kinds.likelihood] = {} add[kinds.likelihood]["one"] = None # Expand the "add" info add = update_info(add) # 2.1 Adding/removing derived parameters and changes in priors of sampled parameters out = {_params: deepcopy_where_possible(info_in[_params])} for p in remove.get(_params, {}): pinfo = info_in[_params].get(p) if pinfo is None or not is_derived_param(pinfo): raise LoggedError( log, "You tried to remove parameter '%s', which is not a derived parameter. " "Only derived parameters can be removed during post-processing.", p) out[_params].pop(p) # Force recomputation of aggregated chi2 for p in list(out[_params]): if p.startswith(_get_chi2_name("")): out[_params].pop(p) mlprior_names_add = [] for p, pinfo in add.get(_params, {}).items(): pinfo_in = info_in[_params].get(p) if is_sampled_param(pinfo): if not is_sampled_param(pinfo_in): # No added sampled parameters (de-marginalisation not implemented) if pinfo_in is None: raise LoggedError( log, "You added a new sampled parameter %r (maybe accidentally " "by adding a new likelihood that depends on it). " "Adding new sampled parameters is not possible. Try fixing " "it to some value.", p) else: raise LoggedError( log, "You tried to change the prior of parameter '%s', " "but it was not a sampled parameter. " "To change that prior, you need to define as an external one.", p) if mlprior_names_add[:1] != _prior_1d_name: mlprior_names_add = ([_minuslogprior + _separator + _prior_1d_name] + mlprior_names_add) elif is_derived_param(pinfo): if p in out[_params]: raise LoggedError( log, "You tried to add derived parameter '%s', which is already " "present. To force its recomputation, 'remove' it too.", p) elif is_fixed_param(pinfo): # Only one possibility left "fixed" parameter that was not present before: # input of new likelihood, or just an argument for dynamical derived (dropped) if ((p in info_in[_params] and pinfo[partag.value] != (pinfo_in or {}).get(partag.value, None))): raise LoggedError( log, "You tried to add a fixed parameter '%s: %r' that was already present" " but had a different value or was not fixed. This is not allowed. " "The old info of the parameter was '%s: %r'", p, dict(pinfo), p, dict(pinfo_in)) else: raise LoggedError(log, "This should not happen. Contact the developers.") out[_params][p] = pinfo # For the likelihood only, turn the rest of *derived* parameters into constants, # so that the likelihoods do not try to compute them) # But be careful to exclude *input* params that have a "derived: True" value # (which in "updated info" turns into "derived: 'lambda [x]: [x]'") out_params_like = deepcopy_where_possible(out[_params]) for p, pinfo in out_params_like.items(): if ((is_derived_param(pinfo) and not (partag.value in pinfo) and p not in add.get(_params, {}))): out_params_like[p] = {partag.value: np.nan, partag.drop: True} # 2.2 Manage adding/removing priors and likelihoods warn_remove = False for level in [_prior, kinds.likelihood]: out[level] = getattr(dummy_model_in, level) if level == _prior: out[level].remove(_prior_1d_name) for pdf in info_post.get(_post_remove, {}).get(level, []) or []: try: out[level].remove(pdf) warn_remove = True except ValueError: raise LoggedError( log, "Trying to remove %s '%s', but it is not present. " "Existing ones: %r", level, pdf, out[level]) if warn_remove: log.warning("You are removing a prior or likelihood pdf. " "Notice that if the resulting posterior is much wider " "than the original one, or displaced enough, " "it is probably safer to explore it directly.") if _prior in add: mlprior_names_add += [_minuslogprior + _separator + name for name in add[_prior]] out[_prior] += list(add[_prior]) prior_recompute_1d = ( mlprior_names_add[:1] == [_minuslogprior + _separator + _prior_1d_name]) # Don't initialise the theory code if not adding/recomputing theory, # theory-derived params or likelihoods recompute_theory = info_in.get(kinds.theory) and not ( list(add[kinds.likelihood]) == ["one"] and not any(is_derived_param(pinfo) for pinfo in add.get(_params, {}).values())) if recompute_theory: # Inherit from the original chain (needs input|output_params, renames, etc add_theory = add.get(kinds.theory) if add_theory: info_theory_out = {} if len(add_theory) > 1: log.warning('Importance sampling with more than one theory is ' 'not really tested') add_theory = add_theory.copy() for theory, theory_info in info_in[kinds.theory].items(): theory_copy = deepcopy_where_possible(theory_info) if theory in add_theory: info_theory_out[theory] = \ recursive_update(theory_copy, add_theory.pop(theory)) else: info_theory_out[theory] = theory_copy info_theory_out.update(add_theory) else: info_theory_out = deepcopy_where_possible(info_in[kinds.theory]) else: info_theory_out = None chi2_names_add = [ _get_chi2_name(name) for name in add[kinds.likelihood] if name != "one"] out[kinds.likelihood] += [l for l in add[kinds.likelihood] if l != "one"] if recompute_theory: log.warning("You are recomputing the theory, but in the current version this does" " not force recomputation of any likelihood or derived parameter, " "unless explicitly removed+added.") for level in [_prior, kinds.likelihood]: for i, x_i in enumerate(out[level]): if x_i in list(out[level])[i + 1:]: raise LoggedError( log, "You have added %s '%s', which was already present. If you " "want to force its recomputation, you must also 'remove' it.", level, x_i) # 3. Create output collection if _post_suffix not in info_post: raise LoggedError(log, "You need to provide a '%s' for your chains.", _post_suffix) # Use default prefix if it exists. If it does not, produce no output by default. # {post: {output: None}} suppresses output, and if it's a string, updates it. out_prefix = info_post.get(_output_prefix, info.get(_output_prefix)) if out_prefix not in [None, False]: out_prefix += _separator_files + _post + _separator_files + info_post[ _post_suffix] output_out = get_output(output_prefix=out_prefix, force=info.get(_force)) if output_out and not output_out.force and output_out.find_collections(): raise LoggedError(log, "Found existing post-processing output with prefix %r. " "Delete it manually or re-run with `force: True` " "(or `-f`, `--force` from the shell).", out_prefix) elif output_out and output_out.force: output_out.delete_infos() for regexp in output_out.find_collections(): output_out.delete_with_regexp(re.compile(regexp)) info_out = deepcopy_where_possible(info) info_out[_post] = info_post # Updated with input info and extended (updated) add info info_out.update(info_in) info_out[_post][_post_add] = add dummy_model_out = DummyModel(out[_params], out[kinds.likelihood], info_prior=out[_prior]) if recompute_theory: # TODO: May need updating for more than one, or maybe can be removed theory = list(info_theory_out)[0] if _input_params not in info_theory_out[theory]: raise LoggedError( log, "You appear to be post-processing a chain generated with an older " "version of Cobaya. For post-processing to work, please edit the " "'[root].updated.yaml' file of the original chain to add, inside the " "theory code block, the list of its input parameters. E.g.\n----\n" "theory:\n %s:\n input_params: [param1, param2, ...]\n" "----\nIf you get strange errors later, it is likely that you did not " "specify the correct set of theory parameters.\n" "The full set of input parameters are %s.", theory, list(dummy_model_out.parameterization.input_params())) # TODO: check allow_renames=False? # TODO: May well be simplifications here, this is v close to pre-refactor logic # Have not gone through or understood all the parameterization stuff model_add = Model(out_params_like, add[kinds.likelihood], info_prior=add.get(_prior), info_theory=info_theory_out, packages_path=info.get(_packages_path), allow_renames=False, post=True, prior_parameterization=dummy_model_out.parameterization) # Remove auxiliary "one" before dumping -- 'add' *is* info_out[_post][_post_add] add[kinds.likelihood].pop("one") collection_out = Collection(dummy_model_out, output_out, name="1") output_out.check_and_dump_info(None, info_out, check_compatible=False) # Prepare recomputation of aggregated chi2 # (they need to be recomputed by hand, because its autocomputation won't pick up # old likelihoods for a given type) all_types = { like: str_to_list(add[kinds.likelihood].get( like, info_in[kinds.likelihood].get(like)).get("type", []) or []) for like in out[kinds.likelihood]} types = set(chain(*list(all_types.values()))) inv_types = {t: [like for like, like_types in all_types.items() if t in like_types] for t in types} # 4. Main loop! log.info("Running post-processing...") last_percent = 0 for i, point in collection_in.data.iterrows(): log.debug("Point: %r", point) sampled = [point[param] for param in dummy_model_in.parameterization.sampled_params()] derived = {param: point.get(param, None) for param in dummy_model_out.parameterization.derived_params()} inputs = {param: point.get( param, dummy_model_in.parameterization.constant_params().get( param, dummy_model_out.parameterization.constant_params().get( param, None))) for param in dummy_model_out.parameterization.input_params()} # Solve inputs that depend on a function and were not saved # (we don't use the Parameterization_to_input method in case there are references # to functions that cannot be loaded at the moment) for p, value in inputs.items(): if value is None: func = dummy_model_out.parameterization._input_funcs[p] args = dummy_model_out.parameterization._input_args[p] inputs[p] = func(*[point.get(arg) for arg in args]) # Add/remove priors priors_add = model_add.prior.logps(sampled) if not prior_recompute_1d: priors_add = priors_add[1:] logpriors_add = dict(zip(mlprior_names_add, priors_add)) logpriors_new = [logpriors_add.get(name, - point.get(name, 0)) for name in collection_out.minuslogprior_names] if log.getEffectiveLevel() <= logging.DEBUG: log.debug( "New set of priors: %r", dict(zip(dummy_model_out.prior, logpriors_new))) if -np.inf in logpriors_new: continue # Add/remove likelihoods output_like = [] if add[kinds.likelihood]: # Notice "one" (last in likelihood_add) is ignored: not in chi2_names loglikes_add, output_like = model_add.logps(inputs, return_derived=True) loglikes_add = dict(zip(chi2_names_add, loglikes_add)) output_like = dict(zip(model_add.output_params, output_like)) else: loglikes_add = dict() loglikes_new = [loglikes_add.get(name, -0.5 * point.get(name, 0)) for name in collection_out.chi2_names] if log.getEffectiveLevel() <= logging.DEBUG: log.debug( "New set of likelihoods: %r", dict(zip(dummy_model_out.likelihood, loglikes_new))) if output_like: log.debug("New set of likelihood-derived parameters: %r", output_like) if -np.inf in loglikes_new: continue # Add/remove derived parameters and change priors of sampled parameters for p in add[_params]: if p in dummy_model_out.parameterization._directly_output: derived[p] = output_like[p] elif p in dummy_model_out.parameterization._derived_funcs: func = dummy_model_out.parameterization._derived_funcs[p] args = dummy_model_out.parameterization._derived_args[p] derived[p] = func( *[point.get(arg, output_like.get(arg, None)) for arg in args]) # We need to recompute the aggregated chi2 by hand for type_, likes in inv_types.items(): derived[_get_chi2_name(type_)] = sum( [-2 * lvalue for lname, lvalue in zip(collection_out.chi2_names, loglikes_new) if _undo_chi2_name(lname) in likes]) if log.getEffectiveLevel() <= logging.DEBUG: log.debug("New derived parameters: %r", dict([(p, derived[p]) for p in dummy_model_out.parameterization.derived_params() if p in add[_params]])) # Save to the collection (keep old weight for now) collection_out.add( sampled, derived=derived.values(), weight=point.get(_weight), logpriors=logpriors_new, loglikes=loglikes_new) # Display progress percent = np.round(i / len(collection_in) * 100) if percent != last_percent and not percent % 5: last_percent = percent progress_bar(log, percent, " (%d/%d)" % (i, len(collection_in))) if not collection_out.data.last_valid_index(): raise LoggedError( log, "No elements in the final sample. Possible causes: " "added a prior or likelihood valued zero over the full sampled domain, " "or the computation of the theory failed everywhere, etc.") # Reweight -- account for large dynamic range! # Prefer to rescale +inf to finite, and ignore final points with -inf. # Remove -inf's (0-weight), and correct indices difflogmax = max(collection_in[_minuslogpost] - collection_out[_minuslogpost]) collection_out.data[_weight] *= np.exp( collection_in[_minuslogpost] - collection_out[_minuslogpost] - difflogmax) collection_out.data = ( collection_out.data[collection_out.data.weight > 0].reset_index(drop=True)) collection_out._n = collection_out.data.last_valid_index() + 1 # Write! collection_out.out_update() log.info("Finished! Final number of samples: %d", len(collection_out)) return info_out, {"sample": collection_out}
def run( info_or_yaml_or_file: Union[InputDict, str, os.PathLike], packages_path: Optional[str] = None, output: Union[str, LiteralFalse, None] = None, debug: Union[bool, int, None] = None, stop_at_error: Optional[bool] = None, resume: bool = False, force: bool = False, no_mpi: bool = False, test: bool = False, override: Optional[InputDict] = None, ) -> Union[InfoSamplerTuple, PostTuple]: """ Run from an input dictionary, file name or yaml string, with optional arguments to override settings in the input as needed. :param info_or_yaml_or_file: input options dictionary, yaml file, or yaml text :param packages_path: path where external packages were installed :param output: path name prefix for output files, or False for no file output :param debug: true for verbose debug output, or a specific logging level :param stop_at_error: stop if an error is raised :param resume: continue an existing run :param force: overwrite existing output if it exists :param no_mpi: run without MPI :param test: only test initialization rather than actually running :param override: option dictionary to merge into the input one, overriding settings (but with lower precedence than the explicit keyword arguments) :return: (updated_info, sampler) tuple of options dictionary and Sampler instance, or (updated_info, results) if using "post" post-processing """ # This function reproduces the model-->output-->sampler pipeline one would follow # when instantiating by hand, but alters the order to performs checks and dump info # as early as possible, e.g. to check if resuming possible or `force` needed. if no_mpi or test: mpi.set_mpi_disabled() with mpi.ProcessState("run"): info: InputDict = load_info_overrides(info_or_yaml_or_file, debug, stop_at_error, packages_path, override) if test: info["test"] = True # If any of resume|force given as cmd args, ignore those in the input file if resume or force: if resume and force: raise ValueError("'rename' and 'force' are exclusive options") info["resume"] = bool(resume) info["force"] = bool(force) if info.get("post"): if isinstance(output, str) or output is False: info["post"]["output"] = output or None return post(info) if isinstance(output, str) or output is False: info["output"] = output or None logger_setup(info.get("debug"), info.get("debug_file")) logger_run = get_logger(run.__name__) # MARKED FOR DEPRECATION IN v3.0 # BEHAVIOUR TO BE REPLACED BY ERROR: check_deprecated_modules_path(info) # END OF DEPRECATION BLOCK # 1. Prepare output driver, if requested by defining an output_prefix # GetDist needs to know the original sampler, so don't overwrite if minimizer try: which_sampler = list(info["sampler"])[0] except (KeyError, TypeError): raise LoggedError( logger_run, "You need to specify a sampler using the 'sampler' key " "as e.g. `sampler: {mcmc: None}.`") infix = "minimize" if which_sampler == "minimize" else None with get_output(prefix=info.get("output"), resume=info.get("resume"), force=info.get("force"), infix=infix) as out: # 2. Update the input info with the defaults for each component updated_info = update_info(info) if is_debug(logger_run): # Dump only if not doing output # (otherwise, the user can check the .updated file) if not out and mpi.is_main_process(): logger_run.info( "Input info updated with defaults (dumped to YAML):\n%s", yaml_dump(sort_cosmetic(updated_info))) # 3. If output requested, check compatibility if existing one, and dump. # 3.1 First: model only out.check_and_dump_info(info, updated_info, cache_old=True, ignore_blocks=["sampler"]) # 3.2 Then sampler -- 1st get the last sampler mentioned in the updated.yaml # TODO: ideally, using Minimizer would *append* to the sampler block. # Some code already in place, but not possible at the moment. try: last_sampler = list(updated_info["sampler"])[-1] last_sampler_info = { last_sampler: updated_info["sampler"][last_sampler] } except (KeyError, TypeError): raise LoggedError(logger_run, "No sampler requested.") sampler_name, sampler_class = get_sampler_name_and_class( last_sampler_info) check_sampler_info((out.reload_updated_info(use_cache=True) or {}).get("sampler"), updated_info["sampler"], is_resuming=out.is_resuming()) # Dump again, now including sampler info out.check_and_dump_info(info, updated_info, check_compatible=False) # Check if resumable run sampler_class.check_force_resume( out, info=updated_info["sampler"][sampler_name]) # 4. Initialize the posterior and the sampler with Model(updated_info["params"], updated_info["likelihood"], updated_info.get("prior"), updated_info.get("theory"), packages_path=info.get("packages_path"), timing=updated_info.get("timing"), allow_renames=False, stop_at_error=info.get("stop_at_error", False)) as model: # Re-dump the updated info, now containing parameter routes and version updated_info = recursive_update(updated_info, model.info()) out.check_and_dump_info(None, updated_info, check_compatible=False) sampler = sampler_class( updated_info["sampler"][sampler_name], model, out, name=sampler_name, packages_path=info.get("packages_path")) # Re-dump updated info, now also containing updates from the sampler updated_info["sampler"][sampler_name] = \ recursive_update(updated_info["sampler"][sampler_name], sampler.info()) out.check_and_dump_info(None, updated_info, check_compatible=False) mpi.sync_processes() if info.get("test", False): logger_run.info( "Test initialization successful! " "You can probably run now without `--%s`.", "test") return InfoSamplerTuple(updated_info, sampler) # Run the sampler sampler.run() return InfoSamplerTuple(updated_info, sampler)
def run(info): # This function reproduces the model-->output-->sampler pipeline one would follow # when instantiating by hand, but alters the order to performs checks and dump info # as early as possible, e.g. to check if resuming possible or `force` needed. assert isinstance(info, Mapping), ( "The first argument must be a dictionary with the info needed for the run. " "If you were trying to pass the name of an input file instead, " "load it first with 'cobaya.input.load_input', " "or, if you were passing a yaml string, load it with 'cobaya.yaml.yaml_load'." ) logger_setup(info.get(_debug), info.get(_debug_file)) logger_run = logging.getLogger(__name__.split(".")[-1]) # MARKED FOR DEPRECATION IN v3.0 # BEHAVIOUR TO BE REPLACED BY ERROR: check_deprecated_modules_path(info) # END OF DEPRECATION BLOCK # 1. Prepare output driver, if requested by defining an output_prefix output = get_output(output_prefix=info.get(_output_prefix), resume=info.get(_resume), force=info.get(_force)) # 2. Update the input info with the defaults for each component updated_info = update_info(info) if logging.root.getEffectiveLevel() <= logging.DEBUG: # Dump only if not doing output (otherwise, the user can check the .updated file) if not output and is_main_process(): logger_run.info( "Input info updated with defaults (dumped to YAML):\n%s", yaml_dump(sort_cosmetic(updated_info))) # 3. If output requested, check compatibility if existing one, and dump. # 3.1 First: model only output.check_and_dump_info(info, updated_info, cache_old=True, ignore_blocks=[kinds.sampler]) # 3.2 Then sampler -- 1st get the last sampler mentioned in the updated.yaml # TODO: ideally, using Minimizer would *append* to the sampler block. # Some code already in place, but not possible at the moment. try: last_sampler = list(updated_info[kinds.sampler])[-1] last_sampler_info = { last_sampler: updated_info[kinds.sampler][last_sampler] } except (KeyError, TypeError): raise LoggedError(logger_run, "No sampler requested.") sampler_name, sampler_class = get_sampler_name_and_class(last_sampler_info) check_sampler_info((output.reload_updated_info(use_cache=True) or {}).get(kinds.sampler), updated_info[kinds.sampler], is_resuming=output.is_resuming()) # Dump again, now including sampler info output.check_and_dump_info(info, updated_info, check_compatible=False) # Check if resumable run sampler_class.check_force_resume( output, info=updated_info[kinds.sampler][sampler_name]) # 4. Initialize the posterior and the sampler with Model(updated_info[_params], updated_info[kinds.likelihood], updated_info.get(_prior), updated_info.get(kinds.theory), packages_path=info.get(_packages_path), timing=updated_info.get(_timing), allow_renames=False, stop_at_error=info.get("stop_at_error", False)) \ as model: # Re-dump the updated info, now containing parameter routes and version info updated_info = recursive_update(updated_info, model.info()) output.check_and_dump_info(None, updated_info, check_compatible=False) sampler = sampler_class(updated_info[kinds.sampler][sampler_name], model, output, packages_path=info.get(_packages_path)) # Re-dump updated info, now also containing updates from the sampler updated_info[kinds.sampler][sampler.get_name()] = \ recursive_update( updated_info[kinds.sampler][sampler.get_name()], sampler.info()) # TODO -- maybe also re-dump model info, now possibly with measured speeds # (waiting until the camb.transfers issue is solved) output.check_and_dump_info(None, updated_info, check_compatible=False) if info.get(_test_run, False): logger_run.info( "Test initialization successful! " "You can probably run now without `--%s`.", _test_run) return updated_info, sampler # Run the sampler sampler.run() return updated_info, sampler
def run(info): assert hasattr(info, "keys"), ( "The first argument must be a dictionary with the info needed for the run. " "If you were trying to pass the name of an input file instead, " "load it first with 'cobaya.input.load_input', " "or, if you were passing a yaml string, load it with 'cobaya.yaml.yaml_load'." ) # Configure the logger ASAP # Just a dummy import before configuring the logger, until I fix root/individual level import getdist logger_setup(info.get(_debug), info.get(_debug_file)) import logging # Initialize output, if required resume, force = info.get(_resume), info.get(_force) ignore_blocks = [] # If minimizer, always try to re-use sample to get bestfit/covmat if list(info[_sampler])[0] == "minimize": resume = True force = False output = Output(output_prefix=info.get(_output_prefix), resume=resume, force_output=force) # Create the updated input information, including defaults for each module. updated_info = update_info(info) if output: updated_info[_output_prefix] = output.updated_output_prefix() updated_info[_resume] = output.is_resuming() if logging.root.getEffectiveLevel() <= logging.DEBUG: # Don't dump unless we are doing output, just in case something not serializable # May be fixed in the future if we find a way to serialize external functions if info.get(_output_prefix) and am_single_or_primary_process(): logging.getLogger(__name__.split(".")[-1]).info( "Input info updated with defaults (dumped to YAML):\n%s", yaml_dump(updated_info)) # TO BE DEPRECATED IN >1.2!!! ##################### _force_reproducible = "force_reproducible" if _force_reproducible in info: info.pop(_force_reproducible) logging.getLogger(__name__.split(".")[-1]).warning( "Option '%s' is no longer necessary. Please remove it!" % _force_reproducible) # CHECK THAT THIS WARNING WORKS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ################################################### # We dump the info now, before modules initialization, to better track errors and # to check if resuming is possible asap (old and new infos are consistent) output.dump_info(info, updated_info) # Initialize the posterior and the sampler with Model(updated_info[_params], updated_info[_likelihood], updated_info.get(_prior), updated_info.get(_theory), modules=info.get(_path_install), timing=updated_info.get(_timing), allow_renames=False) as model: # Update the updated info with the parameter routes keys = ([_likelihood, _theory] if _theory in updated_info else [_likelihood]) updated_info.update(odict([[k, model.info()[k]] for k in keys])) output.dump_info(None, updated_info, check_compatible=False) with Sampler(updated_info[_sampler], model, output, resume=updated_info.get(_resume), modules=info.get(_path_install)) as sampler: sampler.run() # For scripted calls: # Restore the original output_prefix: the script has not changed folder! if _output_prefix in info: updated_info[_output_prefix] = info.get(_output_prefix) return updated_info, sampler.products()