def main(): args = get_train_args() model = init_train_env(args, tbert_type='siamese2') train_dir = os.path.join(args.data_dir, "train") valid_dir = os.path.join(args.data_dir, "valid") train_examples = load_examples(train_dir, model=model, num_limit=args.train_num) valid_examples = load_examples(valid_dir, model=model, num_limit=args.valid_num) train(args, train_examples, valid_examples, model, train_with_neg_sampling) logger.info("Training finished")
def main(): args = get_train_args() model = init_train_env(args, tbert_type='siamese2') valid_examples = load_examples(args.data_dir, data_type="valid", model=model, num_limit=args.valid_num, overwrite=args.overwrite) train_examples = load_examples(args.data_dir, data_type="train", model=model, num_limit=args.train_num, overwrite=args.overwrite) train(args, train_examples, valid_examples, model, train_iter_method=train_with_neg_sampling) logger.info("Training finished")
def main(): args = get_train_args() model = init_train_env(args, tbert_type='single') valid_examples = load_examples(args.data_dir, data_type="valid", model=model, num_limit=args.valid_num, overwrite=args.overwrite) train_examples = load_examples(args.data_dir, data_type="train", model=model, num_limit=args.train_num, overwrite=args.overwrite) train(args, train_examples, valid_examples, model, train_single_iteration) logger.info("Training finished")