class TestCoder(unittest.TestCase): def setUp(self): # Init coder print("Initializing coder...") self.checker = self.checkerList[self.checkerIndex] self.dictionary = Dictionary(self.checker) self.coder = Coder(self.dictionary) # Load all data from DB print("Fetching data from database...") self.allData = self.db.getFixDataForChecker(self.checker) self.allDataLen = len(self.allData) print("Done, fetched {0} records".format(self.allDataLen)) def tearDown(self): self.checkerIndex += 1 @classmethod def setUpClass(self): print("Starting up...") self.db = CFDatabase(config.getCfDbFile()) self.checkers = Checkers() self.checkerList = ['deadcode.DeadStores'] self.checkerIndex = 0 def testDeadcodeDeadStores(self): self.assertTrue(self.allDataLen > 0, msg="No data found") # Encode all data print("Testing encoding") i = 0 while i < self.allDataLen: checkerInfo = self.checkers.extractTokensForChecker( self.checker, self.allData[i][4]) encodedBugData, initialUnkList = self.coder.encode( self.allData[i][1], checkerData=checkerInfo) encodedFixData, finalUnkList = self.coder.encode( self.allData[i][2], unkList=initialUnkList, reverse=False) if -1 in encodedBugData: print( "{0}: [{2} - {3} ({1})] Some tokens were not parsed (bug), ignoring (lenUnk = {1})" .format(i + 1, len(finalUnkList), len(encodedBugData), len(encodedFixData))) elif -1 in encodedFixData: print( "{0}: [{2} - {3} ({1})] Some tokens were not parsed (fix), ignoring (lenUnk = {1})" .format(i + 1, len(finalUnkList), len(encodedBugData), len(encodedFixData))) else: print("{0}: [{2} - {3} ({1})] Done (lenUnk = {1})".format( i + 1, len(finalUnkList), len(encodedBugData), len(encodedFixData))) textBug = self.coder.decode(encodedBugData, finalUnkList, True) textFix = self.coder.decode(encodedFixData, finalUnkList) self.assertEqual(textBug, self.allData[i][1]) self.assertEqual(textFix, self.allData[i][2]) i += 1 print("All done.")
def inference(args): cuda_available = torch.cuda.is_available() model = RNN.load_from_checkpoint(args.model_path).to('cuda:0' if cuda_available else 'cpu') dataset = InferenceDataset(args.data_path) dataloader = DataLoader(dataset, args.batch_size, num_workers=args.num_workers) result = defaultdict(lambda: defaultdict(lambda: Counter())) print('>> started inference') for batch in dataloader: contig, position, X = batch X = X.type(torch.cuda.LongTensor if cuda_available else torch.LongTensor) output = model(X) Y = torch.argmax(output, dim=2).long().cpu().numpy() for c, pos, ys in zip(contig, position, Y): for p, y in zip(pos, ys): base = Coder.decode(y) current_position = (p[0].item(), p[1].item()) result[c][current_position][base] += 1 print('>> started processing of results') contigs = dataset.contigs records = [] for contig in result: values = result[contig] sorted_positions = sorted(values) sorted_positions = list(itertools.dropwhile(lambda x: x[1] != 0, sorted_positions)) first = sorted_positions[0][0] contig_data = contigs[contig] seq = contig_data[0][:first] for _, p in enumerate(sorted_positions): base, _ = values[p].most_common(1)[0] if base == Coder.GAP: continue seq += base last_position = sorted_positions[-1][0] seq += contig_data[0][last_position+1:] seq = Seq(seq) record = SeqRecord.SeqRecord(seq, id=contig) records.append(record) with open(args.out_path, 'w') as f: SeqIO.write(records, f, 'fasta')
class Predictor(): def __init__(self): self.vcs = GitProvider(config.getRepoDir()) self.ccdb = CCDatabase(config.getCcDbFile()) self.codeChecker = CodeChecker(config.getRepoDir()) self.checkers = Checkers() self.loadCommitList() def loadCommitList(self): self.commits = self.vcs.getAllVersions(config.getBranch()) self.currentCommitIndex = 0 def convertFilePathToRepoRelativePath(self, path): return os.path.relpath(path, config.getRepoDir()) def getDiffResolvedIds(self): resolved = self.codeChecker.diffResolved(config.getCcRunName(), config.getTmpDir(), self.ccdb) ids = [] for bug in resolved: ids.append(bug['reportId']) return ids def predict(self, id, checker): # Load all bugs print("Loading bug data...") ids = [] if id == -1: bugs = self.ccdb.getAllBugsForChecker(checker) ids = [x[0] for x in bugs] else: ids.append(id) # Loading model print("Loading model...") model = load_model(config.cfModelFilenameFormat.format(checker)) model.summary() vLabels = ['NOT OK', 'OK', 'Skipped'] # Initialize coder print("Initializing coder...") self.dictionary = Dictionary(checker) self.coder = Coder(self.dictionary) self.totalDictionaryLength = self.dictionary.length() # Predicting print("Starting predictions...") for i in ids: allData = self.ccdb.getBugData(i) if allData.getChecker( ) not in globals.availableCheckers or allData.getChecker( ) != checker: print("Bug #{0} - checker not supported".format(i)) else: # Load extra tokens from checker message checkerInfo = self.checkers.extractTokensForChecker( allData.getChecker(), allData.getMessage()) # Retrieve code fragment with bug fileRelativePath = self.convertFilePathToRepoRelativePath( allData.getFile()) fullCodeWithBug = self.vcs.getFileContents( fileRelativePath, self.commits[self.currentCommitIndex]) extractor = CodeExtractor(allData) extractor.loadCodeFromText(fullCodeWithBug) extractor.extractBugCode() bugCodeFragment = extractor.getBugCodeFragment() fixCodeFragment = '' # Encode it encodedBugData, initialUnkList = self.coder.encode( bugCodeFragment, checkerData=checkerInfo) # Convert to one-hot MODEL_X_MAX_LEN = model.get_layer(index=0).input_shape[1] if len(encodedBugData) > MODEL_X_MAX_LEN: print( "Bug #{0} - Code too big for model, ignored".format(i)) continue elif id == -1: print("Bug #{0} - Good to go".format(i)) continue noZerosToPad = MODEL_X_MAX_LEN - len(encodedBugData) if noZerosToPad > 0: encodedBugData = self.coder.applyPadding( encodedBugData, noZerosToPad) X = np.zeros((1, MODEL_X_MAX_LEN, self.totalDictionaryLength)) X[0] = self.coder.convertToOneHot( encodedBugData, np.zeros((MODEL_X_MAX_LEN, self.totalDictionaryLength))) # Predict and convert from one-hot Y = self.coder.convertFromOneHot(model.predict(X)[0]) print(Y) # Decode Y = self.coder.removePadding(Y) fixCodeFragment = self.coder.decode(Y, initialUnkList) #Verify? vStatus = 2 if config.cfVerifyPrediction: # Apply fix in source code file extractor.applyFix(fixCodeFragment) extractor.saveToFile(allData.getFile()) # Run CodeChecker and analyze code self.codeChecker.check(True) resolvedIds = self.getDiffResolvedIds() # Check if ID is resolved in tmp folder isFixed = i in resolvedIds # Set vStatus accordingly if isFixed: vStatus = 1 else: vStatus = 0 #Print print("Bug #{0} - summary".format(i)) print("== Code fragment with bug ==") print(bugCodeFragment) print("== Suggested fix ==") print(fixCodeFragment) print("Verification: {0}".format(vLabels[vStatus])) a = ' ' while a != 'y' and a != 'n': a = input("Apply fix? (y/n): ") if a == 'y': if not config.cfVerifyPrediction: # Apply fix in source code file extractor.applyFix(fixCodeFragment) extractor.saveToFile(allData.getFile()) elif config.cfVerifyPrediction: # Revert file contents self.vcs.checkout(self.commits[self.currentCommitIndex]) print('Done') print("All done, exiting...")
v_new = s.add_transit(new_state=to_layer + from_layer, gates=v_old, op1=to_layer, op2=from_layer) print(c.list_tokens()) weights, biases, _, residual = s.flash() for k in weights: w, b = weights[k], biases[k] print(k) print(w) print(b.T) a = {"gates": v_old, "op1": c.encode("SC"), "op2": c.encode("SC")} wvb = np.zeros(v_old.shape) for k in weights: w, b = weights[k], biases[k] wvb += w.dot(a[k[1]]) + b z = np.zeros(v_old.shape) a = {"gates": act.f(wvb), "op1": z, "op2": z} wvb = np.zeros(v_old.shape) for k in weights: w, b = weights[k], biases[k] wvb += w.dot(a[k[1]]) + b v_test = act.f(wvb) for v in [v_old, v_test, v_new]: print(c.decode(v), v.T) print(act.e(v_test, v_new).T)
def main(self): # Do analysis shutil.rmtree(config.getTmpDir()) self.codeChecker.check(True) # Diff new newBugs = self.getDiffNew() if len(newBugs) < 1: print('No new bugs introduced, commit is accepted!') return print("New bugs found! Count: {0}. Attempting repairs...".format(len(newBugs))) # Load models models = {} for checker in globals.availableCheckers: models[checker] = load_model(config.cfModelFilenameFormat.format(checker)) # Load all content from files having new files = set([self.convertFilePathToRepoRelativePath(x.getFile()) for x in newBugs]) fileContents = {} for f in files: fn = config.getRepoDir() + f with open(fn, 'r') as fh: fileContents[f] = ''.join(fh.readlines()) # For each file sort by bug line desc suggestions = [] validSuggestions = 0 for f in files: bugs = [x for x in newBugs if self.convertFilePathToRepoRelativePath(x.getFile()) == f] bugs.sort(key=lambda x: x.getLine(), reverse=True) print("=== File: {0} ===".format(f)) # For each bug get a suggestion and test it for b in bugs: print("L{0}, Type: {1}".format(b.getLine(), b.getChecker())) # Prepare useful data dictionary = Dictionary(b.getChecker()) coder = Coder(dictionary) totalDictionaryLength = dictionary.length() # Prepare and extract bug fragment checkerInfo = self.checkers.extractTokensForChecker(b.getChecker(), b.getMessage()) extractor = CodeExtractor(b) extractor.loadCodeFromText(fileContents[f]) extractor.extractBugCode() bugCodeFragment = extractor.getBugCodeFragment() fixCodeFragment = '' # Encode it encodedBugData, initialUnkList = coder.encode(bugCodeFragment, checkerData = checkerInfo) # Convert to one-hot MODEL_X_MAX_LEN = models[b.getChecker()].get_layer(index = 0).input_shape[1] if len(encodedBugData) > MODEL_X_MAX_LEN: print("Ignored: Code too big for model") continue noZerosToPad = MODEL_X_MAX_LEN - len(encodedBugData) if noZerosToPad > 0: encodedBugData = coder.applyPadding(encodedBugData, noZerosToPad) X = np.zeros((1, MODEL_X_MAX_LEN, totalDictionaryLength)) X[0] = coder.convertToOneHot(encodedBugData, np.zeros((MODEL_X_MAX_LEN, totalDictionaryLength))) # Predict and convert from one-hot Y = coder.convertFromOneHot(models[b.getChecker()].predict(X)[0]) Y = coder.removePadding(Y) # Decode fixCodeFragment = coder.decode(Y, initialUnkList)[:-1] #Verify? vStatus = 2 if config.cfVerifyPrediction: # Apply fix in source code file extractor.applyFix(fixCodeFragment) extractor.saveToFile(b.getFile()) # Run CodeChecker and analyze code shutil.rmtree(config.getTmpDir()) compilationLog = self.codeChecker.check(True) newBugsAfterFix = self.getDiffNew() # Check if ID is resolved in tmp folder isFixed = 'Build failed' not in compilationLog for nb in newBugsAfterFix: if self.isBugDataEqual(b, nb): isFixed = False # Set vStatus accordingly if isFixed: vStatus = 1 else: vStatus = 0 # Revert file extractor.loadCodeFromText(fileContents[f]) extractor.saveToFile(b.getFile()) if vStatus == 0: print("Verification: Negative, cannot be applied") elif vStatus == 1: print("Verification: Positive, can be applied") validSuggestions += 1 elif vStatus == 2: print("Verification: Skipped") validSuggestions += 1 sugg = SuggestionData(f, b, bugCodeFragment, fixCodeFragment, vStatus) suggestions.append(sugg) print("Valid suggestions prepared for {0} / {1} bugs.".format(validSuggestions, len(newBugs))) if validSuggestions > 0: print("Apply valid suggestions (a), display them (d), ignore them (i) or abort commit (q)?") apply = False choice = True while choice: c = sys.stdin.read(1) if c == 'a': apply = True choice = False print("Applying fixes...") elif c == 'i': choice = False print("Fixes ignored...") elif c == 'd': self.displaySuggestions(suggestions) print("Apply valid suggestions (a), ignore them (i) or abort commit (q)?") elif c == 'q': print("Aborting commit...") sys.exit(1) if apply: self.applyValidFixes(suggestions, files) print("Fixes applied!") if validSuggestions != len(newBugs): print("Unable to fix all bugs, continue with commit (c) or abort (q)?") choice = True while choice: c = sys.stdin.read(1) if c == 'c': choice = False print("Continuing...") elif c == 'q': print("Aborting commit...") sys.exit(1) else: print("Bugs corrected, commit is good to go!")
from coder import Coder, MorseCoder import string if __name__ == "__main__": # By default, the translator will encode files by switching them to uppercase translator = Coder(string.ascii_lowercase, string.ascii_uppercase) while (1): line = raw_input() coded = translator.encode(line) print coded print translator.decode(coded)