def process(self, events): output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet) > 0 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Muons muon = ev.Muon ## Electrons electron = Collections(ev, "Electron", "tight").get() #electron = electron[(ak.nan_to_num(electron.eta, 99))] electron = electron[(electron.miniPFRelIso_all < 0.12) & (electron.pt > 20) & (abs(electron.eta) < 2.4)] gen_matched_electron = electron[((electron.genPartIdx >= 0) & (abs( electron.matched_gen.pdgId) == 11))] is_flipped = ((gen_matched_electron.matched_gen.pdgId * (-1) == gen_matched_electron.pdgId) & (abs(gen_matched_electron.pdgId) == 11)) #(abs(ev.GenPart[gen_matched_electron.genPartIdx].pdgId) ==abs(gen_matched_electron.pdgId))&(ev.GenPart[gen_matched_electron.genPartIdx].pdgId/abs(ev.GenPart[gen_matched_electron.genPartIdx].pdgId) != gen_matched_electron.pdgId/abs(gen_matched_electron.pdgId)) flipped_electron = gen_matched_electron[is_flipped] flipped_electron = flipped_electron[(ak.fill_none( flipped_electron.pt, 0) > 0)] n_flips = ak.num(flipped_electron) dielectron = choose(electron, 2) SSelectron = ak.any( (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1) leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] leading_flipped_electron_idx = ak.singletons( ak.argmax(flipped_electron.pt, axis=1)) leading_flipped_electron = electron[leading_flipped_electron_idx] ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi # setting up the various weights weight = Weights(len(ev)) if not dataset == 'MuonEG': # generator weight weight.add("weight", ev.genWeight) #selections filters = getFilters(ev, year=self.year, dataset=dataset) electr = ((ak.num(electron) >= 1)) gen_electr = ((ak.num(gen_matched_electron) >= 1)) ss = (SSelectron) flip = (n_flips >= 1) selection = PackedSelection() selection.add('filter', (filters)) selection.add('electr', electr) selection.add('ss', ss) selection.add('flip', flip) selection.add('gen_electr', gen_electr) bl_reqs = ['filter', 'electr', 'gen_electr'] bl_reqs_d = {sel: True for sel in bl_reqs} baseline = selection.require(**bl_reqs_d) f_reqs = bl_reqs + ['flip'] f_reqs_d = {sel: True for sel in f_reqs} flip_sel = selection.require(**f_reqs_d) #adjust weights to prevent length mismatch ak_weight_gen = ak.ones_like( gen_matched_electron[baseline].pt) * weight.weight()[baseline] ak_weight_flip = ak.ones_like( flipped_electron[flip_sel].pt) * weight.weight()[flip_sel] output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(electron)[baseline], weight=weight.weight()[baseline]) output['electron_flips'].fill(dataset=dataset, multiplicity=n_flips[baseline], weight=weight.weight()[baseline]) output["electron"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].pt)), eta=abs(ak.to_numpy(ak.flatten( gen_matched_electron[baseline].eta))), #phi = ak.to_numpy(ak.flatten(leading_electron[baseline].phi)), #weight = ak.to_numpy(ak.flatten(ak_weight_gen)) ) output["electron2"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].pt)), eta=ak.to_numpy(ak.flatten(gen_matched_electron[baseline].eta)), #phi = ak.to_numpy(ak.flatten(leading_electron[baseline].phi)), #weight = ak.to_numpy(ak.flatten(ak_weight_gen)) ) output["flipped_electron"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].pt)), eta=abs(ak.to_numpy(ak.flatten(flipped_electron[flip_sel].eta))), #phi = ak.to_numpy(ak.flatten(flipped_electron[flip_sel].phi)), #weight = ak.to_numpy(ak.flatten(ak_weight_flip)) ) output["flipped_electron2"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].pt)), eta=ak.to_numpy(ak.flatten(flipped_electron[flip_sel].eta)), #phi = ak.to_numpy(ak.flatten(flipped_electron[flip_sel].phi)), #weight = ak.to_numpy(ak.flatten(ak_weight_flip)) ) return output
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet)>2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Muons muon = Collections(ev, "Muon", "tightTTH").get() vetomuon = Collections(ev, "Muon", "vetoTTH").get() dimuon = choose(muon, 2) SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge)>0, axis=1) leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1)) leading_muon = muon[leading_muon_idx] ## Electrons electron = Collections(ev, "Electron", "tightTTH").get() vetoelectron = Collections(ev, "Electron", "vetoTTH").get() dielectron = choose(electron, 2) SSelectron = ak.any((dielectron['0'].charge * dielectron['1'].charge)>0, axis=1) leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] ## Merge electrons and muons - this should work better now in ak1 dilepton = cross(muon, electron) SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge)>0, axis=1) lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort(jet.pt_nom, ascending=False)] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match(jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta)<2.4)] btag = getBTagsDeepFlavB(jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax(abs(fwd.eta), axis=1))] # jet with highest eta jf = cross(j_fwd, jet) mjf = (jf['0']+jf['1']).mass j_fwd2 = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd delta_eta = abs(j_fwd2.eta - j_fwd.eta) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt, axis=1) ## event selectors filters = getFilters(ev, year=self.year, dataset=dataset) dilep = ((ak.num(electron) + ak.num(muon))==2) lep0pt = ((ak.num(electron[(electron.pt>25)]) + ak.num(muon[(muon.pt>25)]))>0) lep0pt_100 = ((ak.num(electron[(electron.pt>100)]) + ak.num(muon[(muon.pt>100)]))>0) lep1pt = ((ak.num(electron[(electron.pt>20)]) + ak.num(muon[(muon.pt>20)]))>1) lepveto = ((ak.num(vetoelectron) + ak.num(vetomuon))==2) # define the weight weight = Weights( len(ev) ) if not dataset=='MuonEG': # lumi weight weight.add("weight", ev.weight*cfg['lumi'][self.year]) # PU weight - not in the babies... weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) selection = PackedSelection() selection.add('lepveto', lepveto) selection.add('dilep', dilep ) selection.add('filter', (filters) ) selection.add('p_T(lep0)>25', lep0pt ) selection.add('p_T(lep1)>20', lep1pt ) selection.add('SS', ( SSlepton | SSelectron | SSmuon) ) selection.add('N_jet>3', (ak.num(jet)>=4) ) selection.add('N_central>2', (ak.num(central)>=3) ) selection.add('N_btag>0', (ak.num(btag)>=1) ) selection.add('lead_lep', lep0pt_100 ) selection.add('mll', (ak.any(dilepton.mass>125, axis=1) | ak.any(dielectron.mass>125, axis=1) | ak.any(dimuon.mass>125, axis=1) ) ) selection.add('MET>50', (ev.MET.pt>50) ) selection.add('eta_fwd', (ak.any(abs(j_fwd.eta)>1.75, axis=1 ) )) selection.add('delta_eta', (ak.any(delta_eta>2, axis=1) ) ) selection.add('ST', (st>500) ) ss_reqs = ['lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS'] bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0', 'lead_lep', 'mll', 'MET>50', 'eta_fwd', 'delta_eta', 'ST'] ss_reqs_d = { sel: True for sel in ss_reqs } ss_selection = selection.require(**ss_reqs_d) bl_reqs_d = { sel: True for sel in bl_reqs } BL = selection.require(**bl_reqs_d) cutflow = Cutflow(output, ev, weight=weight) cutflow_reqs_d = {} for req in bl_reqs: cutflow_reqs_d.update({req: True}) cutflow.addRow( req, selection.require(**cutflow_reqs_d) ) # first, make a few super inclusive plots output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[ss_selection].npvs, weight=weight.weight()[ss_selection]) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[ss_selection].npvsGood, weight=weight.weight()[ss_selection]) output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[ss_selection], weight=weight.weight()[ss_selection]) output['N_b'].fill(dataset=dataset, multiplicity=ak.num(btag)[ss_selection], weight=weight.weight()[ss_selection]) output['N_central'].fill(dataset=dataset, multiplicity=ak.num(central)[ss_selection], weight=weight.weight()[ss_selection]) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(electron)[ss_selection], weight=weight.weight()[ss_selection]) output['N_mu'].fill(dataset=dataset, multiplicity=ak.num(electron)[ss_selection], weight=weight.weight()[ss_selection]) output['N_fwd'].fill(dataset=dataset, multiplicity=ak.num(fwd)[ss_selection], weight=weight.weight()[ss_selection]) output['MET'].fill( dataset = dataset, pt = ev.MET[ss_selection].pt, phi = ev.MET[ss_selection].phi, weight = weight.weight()[ss_selection] ) output['lead_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_lepton[BL].pt)), eta = ak.to_numpy(ak.flatten(leading_lepton[BL].eta)), phi = ak.to_numpy(ak.flatten(leading_lepton[BL].phi)), weight = weight.weight()[BL] ) output['trail_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)), eta = ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)), phi = ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)), weight = weight.weight()[BL] ) output['j1'].fill( dataset = dataset, pt = ak.flatten(jet.pt_nom[:, 0:1][BL]), eta = ak.flatten(jet.eta[:, 0:1][BL]), phi = ak.flatten(jet.phi[:, 0:1][BL]), weight = weight.weight()[BL] ) output['j2'].fill( dataset = dataset, pt = ak.flatten(jet[:, 1:2][BL].pt_nom), eta = ak.flatten(jet[:, 1:2][BL].eta), phi = ak.flatten(jet[:, 1:2][BL].phi), weight = weight.weight()[BL] ) output['j3'].fill( dataset = dataset, pt = ak.flatten(jet[:, 2:3][BL].pt_nom), eta = ak.flatten(jet[:, 2:3][BL].eta), phi = ak.flatten(jet[:, 2:3][BL].phi), weight = weight.weight()[BL] ) return output
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet) > 2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Generated leptons '''gen_lep = ev.GenL leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))] trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))]''' ## Muons muon = Collections(ev, "Muon", "tightTTH").get() vetomuon = Collections(ev, "Muon", "vetoTTH").get() leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1)) leading_muon = muon[leading_muon_idx] ## Electrons electron = Collections(ev, "Electron", "tightTTH").get() vetoelectron = Collections(ev, "Electron", "vetoTTH").get() leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] ## Merge electrons and muons - this should work better now in ak1 dilepton = cross(muon, electron) dimuon = choose(muon, 2) OS_dimuon = dimuon[(dimuon['0'].charge * dimuon['1'].charge < 0)] dielectron = choose(electron, 2) OS_dielectron = dielectron[( dielectron['0'].charge * dielectron['1'].charge < 0)] OS_dimuon_bestZmumu = OS_dimuon[ak.singletons( ak.argmin(abs(OS_dimuon.mass - 91.2), axis=1))] OS_dielectron_bestZee = OS_dielectron[ak.singletons( ak.argmin(abs(OS_dielectron.mass - 91.2), axis=1))] OS_dilepton_mass = ak.fill_none( ak.pad_none(ak.concatenate( [OS_dimuon_bestZmumu.mass, OS_dielectron_bestZee.mass], axis=1), 1, clip=True), -1) lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort( jet.pt_nom, ascending=False )] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta) < 2.4)] btag = getBTagsDeepFlavB( jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax( fwd.p, axis=1))] # highest momentum spectator jf = cross(j_fwd, jet) mjf = (jf['0'] + jf['1']).mass # j_fwd2 = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd # delta_eta = abs(j_fwd2.eta - j_fwd.eta) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt, axis=1) # define the weight weight = Weights(len(ev)) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): # lumi weight weight.add("weight", ev.weight * cfg['lumi'][self.year]) # PU weight - not in the babies... weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs # weight.add("lepton", self.leptonSF.get(electron, muon)) cutflow = Cutflow(output, ev, weight=weight) sel = Selection( dataset=dataset, events=ev, year=self.year, ele=electron, ele_veto=vetoelectron, mu=muon, mu_veto=vetomuon, jet_all=jet, jet_central=central, jet_btag=btag, jet_fwd=fwd, met=ev.MET, ) BL = sel.trilep_baseline(cutflow=cutflow) # first, make a few super inclusive plots output['ST'].fill(dataset=dataset, ht=st[BL], weight=weight.weight()[BL]) output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight.weight()[BL]) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight.weight()[BL]) output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[BL], weight=weight.weight()[BL]) output['N_b'].fill(dataset=dataset, multiplicity=ak.num(btag)[BL], weight=weight.weight()[BL]) output['N_central'].fill(dataset=dataset, multiplicity=ak.num(central)[BL], weight=weight.weight()[BL]) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(vetoelectron)[BL], weight=weight.weight()[BL]) output['N_mu'].fill(dataset=dataset, multiplicity=ak.num(vetomuon)[BL], weight=weight.weight()[BL]) output['N_fwd'].fill(dataset=dataset, multiplicity=ak.num(fwd)[BL], weight=weight.weight()[BL]) '''output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight.weight()[BL]) output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight.weight()[BL]) output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight.weight()[BL]) output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight.weight()[BL]) output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight.weight()[BL]) output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight.weight()[BL])''' # make a plot of the dilepton mass, but without applying the cut on the dilepton mass itself (N-1 plot) output['dilep_mass'].fill( dataset=dataset, mass=ak.flatten( OS_dilepton_mass[sel.trilep_baseline(omit=['offZ'])]), weight=weight.weight()[sel.trilep_baseline(omit=['offZ'])]) output['MET'].fill(dataset=dataset, pt=ev.MET[BL].pt, phi=ev.MET[BL].phi, weight=weight.weight()[BL]) '''output['lead_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)), weight = weight.weight()[BL] ) output['trail_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)), weight = weight.weight()[BL] )''' output['lead_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(leading_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(leading_lepton[BL].phi)), weight=weight.weight()[BL]) output['trail_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)), weight=weight.weight()[BL]) output['j1'].fill(dataset=dataset, pt=ak.flatten(jet.pt_nom[:, 0:1][BL]), eta=ak.flatten(jet.eta[:, 0:1][BL]), phi=ak.flatten(jet.phi[:, 0:1][BL]), weight=weight.weight()[BL]) output['j2'].fill(dataset=dataset, pt=ak.flatten(jet[:, 1:2][BL].pt_nom), eta=ak.flatten(jet[:, 1:2][BL].eta), phi=ak.flatten(jet[:, 1:2][BL].phi), weight=weight.weight()[BL]) #output['j3'].fill( # dataset = dataset, # pt = ak.flatten(jet[:, 2:3][BL].pt_nom), # eta = ak.flatten(jet[:, 2:3][BL].eta), # phi = ak.flatten(jet[:, 2:3][BL].phi), # weight = weight.weight()[BL] #) output['fwd_jet'].fill(dataset=dataset, pt=ak.flatten(j_fwd[BL].pt), eta=ak.flatten(j_fwd[BL].eta), phi=ak.flatten(j_fwd[BL].phi), weight=weight.weight()[BL]) output['high_p_fwd_p'].fill(dataset=dataset, p=ak.flatten(j_fwd[BL].p), weight=weight.weight()[BL]) vetolepton = ak.concatenate([vetomuon, vetoelectron], axis=1) trilep = choose3(vetolepton, 3) trilep_m = trilep.mass output['m3l'].fill(dataset=dataset, mass=ak.flatten(trilep_m[BL]), weight=weight.weight()[BL]) return output
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet) > 2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): ## Generated leptons gen_lep = ev.GenL leading_gen_lep = gen_lep[ak.singletons( ak.argmax(gen_lep.pt, axis=1))] trailing_gen_lep = gen_lep[ak.singletons( ak.argmin(gen_lep.pt, axis=1))] ## Muons muon = Collections(ev, "Muon", "tightSSTTH").get() vetomuon = Collections(ev, "Muon", "vetoTTH").get() dimuon = choose(muon, 2) SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1) leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1)) leading_muon = muon[leading_muon_idx] ## Electrons electron = Collections(ev, "Electron", "tightSSTTH").get() vetoelectron = Collections(ev, "Electron", "vetoTTH").get() dielectron = choose(electron, 2) SSelectron = ak.any( (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1) leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] ## Merge electrons and muons - this should work better now in ak1 dilepton = cross(muon, electron) SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0, axis=1) lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] dilepton_mass = (leading_lepton + trailing_lepton).mass dilepton_pt = (leading_lepton + trailing_lepton).pt dilepton_dR = delta_r(leading_lepton, trailing_lepton) lepton_pdgId_pt_ordered = ak.fill_none( ak.pad_none(lepton[ak.argsort(lepton.pt, ascending=False)].pdgId, 2, clip=True), 0) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): n_nonprompt = getNonPromptFromFlavour( electron) + getNonPromptFromFlavour(muon) n_chargeflip = getChargeFlips( electron, ev.GenPart) + getChargeFlips(muon, ev.GenPart) mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi) min_mt_lep_met = ak.min(mt_lep_met, axis=1) ## Tau and other stuff tau = getTaus(ev) track = getIsoTracks(ev) ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort( jet.pt_nom, ascending=False )] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta) < 2.4)] btag = getBTagsDeepFlavB( jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2] bl = cross(lepton, high_score_btag) bl_dR = delta_r(bl['0'], bl['1']) min_bl_dR = ak.min(bl_dR, axis=1) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax( fwd.p, axis=1))] # highest momentum spectator jf = cross(j_fwd, jet) mjf = (jf['0'] + jf['1']).mass j_fwd2 = jf[ak.singletons( ak.argmax(mjf, axis=1) )]['1'] # this is the jet that forms the largest invariant mass with j_fwd delta_eta = abs(j_fwd2.eta - j_fwd.eta) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt, axis=1) # define the weight weight = Weights(len(ev)) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): # lumi weight weight.add("weight", ev.weight * cfg['lumi'][self.year]) #weight.add("weight", ev.genWeight*cfg['lumi'][self.year]*mult) # PU weight - not in the babies... weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) cutflow = Cutflow(output, ev, weight=weight) sel = Selection( dataset=dataset, events=ev, year=self.year, ele=electron, ele_veto=vetoelectron, mu=muon, mu_veto=vetomuon, jet_all=jet, jet_central=central, jet_btag=btag, jet_fwd=fwd, met=ev.MET, ) BL = sel.dilep_baseline(cutflow=cutflow, SS=True) weight_BL = weight.weight()[BL] if True: # define the inputs to the NN # this is super stupid. there must be a better way. NN_inputs = np.stack([ ak.to_numpy(ak.num(jet[BL])), ak.to_numpy(ak.num(tau[BL])), ak.to_numpy(ak.num(track[BL])), ak.to_numpy(st[BL]), ak.to_numpy(ev.MET[BL].pt), ak.to_numpy(ak.max(mjf[BL], axis=1)), ak.to_numpy(pad_and_flatten(delta_eta[BL])), ak.to_numpy(pad_and_flatten(leading_lepton[BL].pt)), ak.to_numpy(pad_and_flatten(leading_lepton[BL].eta)), ak.to_numpy(pad_and_flatten(trailing_lepton[BL].pt)), ak.to_numpy(pad_and_flatten(trailing_lepton[BL].eta)), ak.to_numpy(pad_and_flatten(dilepton_mass[BL])), ak.to_numpy(pad_and_flatten(dilepton_pt[BL])), ak.to_numpy(pad_and_flatten(j_fwd[BL].pt)), ak.to_numpy(pad_and_flatten(j_fwd[BL].p)), ak.to_numpy(pad_and_flatten(j_fwd[BL].eta)), ak.to_numpy(pad_and_flatten(jet[:, 0:1][BL].pt)), ak.to_numpy(pad_and_flatten(jet[:, 1:2][BL].pt)), ak.to_numpy(pad_and_flatten(jet[:, 0:1][BL].eta)), ak.to_numpy(pad_and_flatten(jet[:, 1:2][BL].eta)), ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1][BL].pt)), ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2][BL].pt)), ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1][BL].eta)), ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2][BL].eta)), ak.to_numpy(min_bl_dR[BL]), ak.to_numpy(min_mt_lep_met[BL]), ]) NN_inputs = np.moveaxis(NN_inputs, 0, 1) model, scaler = load_onnx_model('v8') try: NN_inputs_scaled = scaler.transform(NN_inputs) NN_pred = predict_onnx(model, NN_inputs_scaled) best_score = np.argmax(NN_pred, axis=1) except ValueError: #print ("Empty NN_inputs") NN_pred = np.array([]) best_score = np.array([]) NN_inputs_scaled = NN_inputs #k.clear_session() output['node'].fill(dataset=dataset, multiplicity=best_score, weight=weight_BL) output['node0_score_incl'].fill( dataset=dataset, score=NN_pred[:, 0] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL) output['node0_score'].fill( dataset=dataset, score=NN_pred[best_score == 0][:, 0] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL[best_score == 0]) output['node1_score'].fill( dataset=dataset, score=NN_pred[best_score == 1][:, 1] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL[best_score == 1]) output['node2_score'].fill( dataset=dataset, score=NN_pred[best_score == 2][:, 2] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL[best_score == 2]) output['node3_score'].fill( dataset=dataset, score=NN_pred[best_score == 3][:, 3] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL[best_score == 3]) output['node4_score'].fill( dataset=dataset, score=NN_pred[best_score == 4][:, 4] if np.shape(NN_pred)[0] > 0 else np.array([]), weight=weight_BL[best_score == 4]) del model del scaler del NN_inputs, NN_inputs_scaled, NN_pred # first, make a few super inclusive plots output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight_BL) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight_BL) output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[BL], weight=weight_BL) output['N_b'].fill(dataset=dataset, multiplicity=ak.num(btag)[BL], weight=weight_BL) output['N_central'].fill(dataset=dataset, multiplicity=ak.num(central)[BL], weight=weight_BL) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(electron)[BL], weight=weight_BL) output['N_mu'].fill(dataset=dataset, multiplicity=ak.num(electron)[BL], weight=weight_BL) output['N_fwd'].fill(dataset=dataset, multiplicity=ak.num(fwd)[BL], weight=weight_BL) output['ST'].fill(dataset=dataset, pt=st[BL], weight=weight_BL) output['HT'].fill(dataset=dataset, pt=ht[BL], weight=weight_BL) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight_BL) output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight_BL) output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight_BL) output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight_BL) output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight_BL) output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight_BL) output['chargeFlip_vs_nonprompt'].fill(dataset=dataset, n1=n_chargeflip[BL], n2=n_nonprompt[BL], n_ele=ak.num(electron)[BL], weight=weight_BL) output['MET'].fill(dataset=dataset, pt=ev.MET[BL].pt, phi=ev.MET[BL].phi, weight=weight_BL) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['lead_gen_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)), eta=ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)), phi=ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)), weight=weight_BL) output['trail_gen_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)), eta=ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)), phi=ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)), weight=weight_BL) output['lead_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(leading_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(leading_lepton[BL].phi)), weight=weight_BL) output['trail_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)), weight=weight_BL) output['j1'].fill(dataset=dataset, pt=ak.flatten(jet.pt_nom[:, 0:1][BL]), eta=ak.flatten(jet.eta[:, 0:1][BL]), phi=ak.flatten(jet.phi[:, 0:1][BL]), weight=weight_BL) output['j2'].fill(dataset=dataset, pt=ak.flatten(jet[:, 1:2][BL].pt_nom), eta=ak.flatten(jet[:, 1:2][BL].eta), phi=ak.flatten(jet[:, 1:2][BL].phi), weight=weight_BL) output['j3'].fill(dataset=dataset, pt=ak.flatten(jet[:, 2:3][BL].pt_nom), eta=ak.flatten(jet[:, 2:3][BL].eta), phi=ak.flatten(jet[:, 2:3][BL].phi), weight=weight_BL) output['fwd_jet'].fill(dataset=dataset, pt=ak.flatten(j_fwd[BL].pt), eta=ak.flatten(j_fwd[BL].eta), phi=ak.flatten(j_fwd[BL].phi), weight=weight_BL) output['high_p_fwd_p'].fill(dataset=dataset, p=ak.flatten(j_fwd[BL].p), weight=weight_BL) return output
def process(self, events): output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet) >= 2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Electrons electron = Collections(ev, "Electron", "tight").get() electron = electron[(electron.pt > 20) & (abs(electron.eta) < 2.4)] electron = electron[((electron.genPartIdx >= 0) & (np.abs(electron.matched_gen.pdgId) == 11) )] #from here on all leptons are gen-matched ##Muons muon = Collections(ev, "Muon", "tight").get() muon = muon[(muon.pt > 20) & (abs(muon.eta) < 2.4)] muon = muon[((muon.genPartIdx >= 0) & (np.abs(muon.matched_gen.pdgId) == 13))] ##Leptons lepton = ak.concatenate([muon, electron], axis=1) SSlepton = (ak.sum(lepton.charge, axis=1) != 0) & (ak.num(lepton) == 2) OSlepton = (ak.sum(lepton.charge, axis=1) == 0) & (ak.num(lepton) == 2) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] #jets jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt') jet = jet[ak.argsort( jet.pt, ascending=False )] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match(jet, electron, deltaRCut=0.4)] ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi # setting up the various weights weight = Weights(len(ev)) weight2 = Weights(len(ev)) if not dataset == 'MuonEG': # generator weight weight.add("weight", ev.genWeight) weight2.add("weight", ev.genWeight) weight2.add("charge flip", self.charge_flip_ratio.flip_weight(electron)) #selections filters = getFilters(ev, year=self.year, dataset=dataset) ss = (SSlepton) os = (OSlepton) jet_all = (ak.num(jet) >= 2) selection = PackedSelection() selection.add('filter', (filters)) selection.add('ss', ss) selection.add('os', os) selection.add('jet', jet_all) bl_reqs = ['filter', 'jet'] bl_reqs_d = {sel: True for sel in bl_reqs} baseline = selection.require(**bl_reqs_d) s_reqs = bl_reqs + ['ss'] s_reqs_d = {sel: True for sel in s_reqs} ss_sel = selection.require(**s_reqs_d) o_reqs = bl_reqs + ['os'] o_reqs_d = {sel: True for sel in o_reqs} os_sel = selection.require(**o_reqs_d) #outputs output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[baseline], weight=weight.weight()[baseline]) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(lepton)[ss_sel], weight=weight.weight()[ss_sel]) output['N_ele2'].fill(dataset=dataset, multiplicity=ak.num(lepton)[os_sel], weight=weight2.weight()[os_sel]) output["electron"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[ss_sel].pt)), eta=abs(ak.to_numpy(ak.flatten(leading_lepton[ss_sel].eta))), phi=ak.to_numpy(ak.flatten(leading_lepton[ss_sel].phi)), weight=weight.weight()[ss_sel]) output["electron2"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[os_sel].pt)), eta=abs(ak.to_numpy(ak.flatten(leading_lepton[os_sel].eta))), phi=ak.to_numpy(ak.flatten(leading_lepton[os_sel].phi)), weight=weight2.weight()[os_sel]) return output
def process_shift(self, events, shift_name): dataset = events.metadata['dataset'] isRealData = not hasattr(events, "genWeight") selection = PackedSelection() weights = Weights(len(events), storeIndividual=True) output = self.make_output() if shift_name is None and not isRealData: output['sumw'] = ak.sum(events.genWeight) if isRealData or self._newTrigger: trigger = np.zeros(len(events), dtype='bool') for t in self._triggers[self._year]: if t in events.HLT.fields: trigger = trigger | events.HLT[t] selection.add('trigger', trigger) del trigger else: selection.add('trigger', np.ones(len(events), dtype='bool')) if isRealData: selection.add( 'lumimask', lumiMasks[self._year](events.run, events.luminosityBlock)) else: selection.add('lumimask', np.ones(len(events), dtype='bool')) if isRealData: trigger = np.zeros(len(events), dtype='bool') for t in self._muontriggers[self._year]: if t in events.HLT.fields: trigger |= np.array(events.HLT[t]) selection.add('muontrigger', trigger) del trigger else: selection.add('muontrigger', np.ones(len(events), dtype='bool')) metfilter = np.ones(len(events), dtype='bool') for flag in self._met_filters[ self._year]['data' if isRealData else 'mc']: metfilter &= np.array(events.Flag[flag]) selection.add('metfilter', metfilter) del metfilter fatjets = events.FatJet fatjets['msdcorr'] = corrected_msoftdrop(fatjets) fatjets['qcdrho'] = 2 * np.log(fatjets.msdcorr / fatjets.pt) fatjets['n2ddt'] = fatjets.n2b1 - n2ddt_shift(fatjets, year=self._year) fatjets['msdcorr_full'] = fatjets['msdcorr'] * self._msdSF[self._year] candidatejet = fatjets[ # https://github.com/DAZSLE/BaconAnalyzer/blob/master/Analyzer/src/VJetLoader.cc#L269 (fatjets.pt > 200) & (abs(fatjets.eta) < 2.5) & fatjets.isTight # this is loose in sampleContainer ] candidatejet = candidatejet[:, : 2] # Only consider first two to match generators if self._jet_arbitration == 'pt': candidatejet = ak.firsts(candidatejet) elif self._jet_arbitration == 'mass': candidatejet = ak.firsts(candidatejet[ak.argmax( candidatejet.msdcorr, axis=1, keepdims=True)]) elif self._jet_arbitration == 'n2': candidatejet = ak.firsts(candidatejet[ak.argmin(candidatejet.n2ddt, axis=1, keepdims=True)]) elif self._jet_arbitration == 'ddb': candidatejet = ak.firsts(candidatejet[ak.argmax( candidatejet.btagDDBvLV2, axis=1, keepdims=True)]) elif self._jet_arbitration == 'ddc': candidatejet = ak.firsts(candidatejet[ak.argmax( candidatejet.btagDDCvLV2, axis=1, keepdims=True)]) else: raise RuntimeError("Unknown candidate jet arbitration") if self._tagger == 'v1': bvl = candidatejet.btagDDBvL cvl = candidatejet.btagDDCvL cvb = candidatejet.btagDDCvB elif self._tagger == 'v2': bvl = candidatejet.btagDDBvLV2 cvl = candidatejet.btagDDCvLV2 cvb = candidatejet.btagDDCvBV2 elif self._tagger == 'v3': bvl = candidatejet.particleNetMD_Xbb cvl = candidatejet.particleNetMD_Xcc / ( 1 - candidatejet.particleNetMD_Xbb) cvb = candidatejet.particleNetMD_Xcc / ( candidatejet.particleNetMD_Xcc + candidatejet.particleNetMD_Xbb) elif self._tagger == 'v4': bvl = candidatejet.particleNetMD_Xbb cvl = candidatejet.btagDDCvLV2 cvb = candidatejet.particleNetMD_Xcc / ( candidatejet.particleNetMD_Xcc + candidatejet.particleNetMD_Xbb) else: raise ValueError("Not an option") selection.add('minjetkin', (candidatejet.pt >= 450) & (candidatejet.pt < 1200) & (candidatejet.msdcorr >= 40.) & (candidatejet.msdcorr < 201.) & (abs(candidatejet.eta) < 2.5)) selection.add('minjetkinmu', (candidatejet.pt >= 400) & (candidatejet.pt < 1200) & (candidatejet.msdcorr >= 40.) & (candidatejet.msdcorr < 201.) & (abs(candidatejet.eta) < 2.5)) selection.add('jetid', candidatejet.isTight) selection.add('n2ddt', (candidatejet.n2ddt < 0.)) if not self._tagger == 'v2': selection.add('ddbpass', (bvl >= 0.89)) selection.add('ddcpass', (cvl >= 0.83)) selection.add('ddcvbpass', (cvb >= 0.2)) else: selection.add('ddbpass', (bvl >= 0.7)) selection.add('ddcpass', (cvl >= 0.45)) selection.add('ddcvbpass', (cvb >= 0.03)) jets = events.Jet jets = jets[(jets.pt > 30.) & (abs(jets.eta) < 2.5) & jets.isTight] # only consider first 4 jets to be consistent with old framework jets = jets[:, :4] dphi = abs(jets.delta_phi(candidatejet)) selection.add( 'antiak4btagMediumOppHem', ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch], axis=1, mask_identity=False) < BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium']) ak4_away = jets[dphi > 0.8] selection.add( 'ak4btagMedium08', ak.max(ak4_away[self._ak4tagBranch], axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium']) met = events.MET selection.add('met', met.pt < 140.) goodmuon = ((events.Muon.pt > 10) & (abs(events.Muon.eta) < 2.4) & (events.Muon.pfRelIso04_all < 0.25) & events.Muon.looseId) nmuons = ak.sum(goodmuon, axis=1) leadingmuon = ak.firsts(events.Muon[goodmuon]) if self._looseTau: goodelectron = ((events.Electron.pt > 10) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.VETO)) nelectrons = ak.sum(goodelectron, axis=1) ntaus = ak.sum( ((events.Tau.pt > 20) & (abs(events.Tau.eta) < 2.3) & events.Tau.idDecayMode & ((events.Tau.idMVAoldDM2017v2 & 2) != 0) & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4, axis=2) & ak.all(events.Tau.metric_table( events.Electron[goodelectron]) > 0.4, axis=2)), axis=1, ) else: goodelectron = ( (events.Electron.pt > 10) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.LOOSE)) nelectrons = ak.sum(goodelectron, axis=1) ntaus = ak.sum( (events.Tau.pt > 20) & events.Tau.idDecayMode # bacon iso looser than Nano selection & ak.all(events.Tau.metric_table(events.Muon[goodmuon]) > 0.4, axis=2) & ak.all(events.Tau.metric_table(events.Electron[goodelectron]) > 0.4, axis=2), axis=1, ) selection.add('noleptons', (nmuons == 0) & (nelectrons == 0) & (ntaus == 0)) selection.add('onemuon', (nmuons == 1) & (nelectrons == 0) & (ntaus == 0)) selection.add('muonkin', (leadingmuon.pt > 55.) & (abs(leadingmuon.eta) < 2.1)) selection.add('muonDphiAK8', abs(leadingmuon.delta_phi(candidatejet)) > 2 * np.pi / 3) # W-Tag (Tag and Probe) # tag side selection.add( 'ak4btagMediumOppHem', ak.max(jets[dphi > np.pi / 2][self._ak4tagBranch], axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._ak4tagger][self._year]['medium']) selection.add('met40p', met.pt > 40.) selection.add('tightMuon', (leadingmuon.tightId) & (leadingmuon.pt > 53.)) selection.add('ptrecoW', (leadingmuon + met).pt > 250.) selection.add('ptrecoW200', (leadingmuon + met).pt > 200.) selection.add( 'ak4btagNearMu', leadingmuon.delta_r(leadingmuon.nearest(ak4_away, axis=None)) < 2.0) _bjets = jets[self._ak4tagBranch] > BTagEfficiency.btagWPs[ self._ak4tagger][self._year]['medium'] _nearAK8 = jets.delta_r(candidatejet) < 0.8 _nearMu = jets.delta_r(ak.firsts(events.Muon)) < 0.3 selection.add('ak4btagOld', ak.sum(_bjets & ~_nearAK8 & ~_nearMu, axis=1) >= 1) # probe side selection.add('minWjetpteta', (candidatejet.pt >= 200) & (abs(candidatejet.eta) < 2.4)) selection.add( 'noNearMuon', candidatejet.delta_r( candidatejet.nearest(events.Muon[goodmuon], axis=None)) > 1.0) ##### if isRealData: genflavor = ak.zeros_like(candidatejet.pt) else: weights.add('genweight', events.genWeight) if "PSWeight" in events.fields: add_ps_weight(weights, events.PSWeight) else: add_ps_weight(weights, None) if "LHEPdfWeight" in events.fields: add_pdf_weight(weights, events.LHEPdfWeight) else: add_pdf_weight(weights, None) if "LHEScaleWeight" in events.fields: add_scalevar_7pt(weights, events.LHEScaleWeight) add_scalevar_3pt(weights, events.LHEScaleWeight) else: add_scalevar_7pt(weights, []) add_scalevar_3pt(weights, []) add_pileup_weight(weights, events.Pileup.nPU, self._year, dataset) bosons = getBosons(events.GenPart) matchedBoson = candidatejet.nearest(bosons, axis=None, threshold=0.8) if self._tightMatch: match_mask = ( (candidatejet.pt - matchedBoson.pt) / matchedBoson.pt < 0.5) & ((candidatejet.msdcorr - matchedBoson.mass) / matchedBoson.mass < 0.3) selmatchedBoson = ak.mask(matchedBoson, match_mask) genflavor = bosonFlavor(selmatchedBoson) else: genflavor = bosonFlavor(matchedBoson) genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0) if self._newVjetsKfactor: add_VJets_kFactors(weights, events.GenPart, dataset) else: add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset) if shift_name is None: output['btagWeight'].fill(val=self._btagSF.addBtagWeight( weights, ak4_away, self._ak4tagBranch)) if self._nnlops_rew and dataset in [ 'GluGluHToCC_M125_13TeV_powheg_pythia8' ]: weights.add('minlo_rew', powheg_to_nnlops(ak.to_numpy(genBosonPt))) if self._newTrigger: add_jetTriggerSF(weights, ak.firsts(fatjets), self._year, selection) else: add_jetTriggerWeight(weights, candidatejet.msdcorr, candidatejet.pt, self._year) add_mutriggerSF(weights, leadingmuon, self._year, selection) add_mucorrectionsSF(weights, leadingmuon, self._year, selection) if self._year in ("2016", "2017"): weights.add("L1Prefiring", events.L1PreFiringWeight.Nom, events.L1PreFiringWeight.Up, events.L1PreFiringWeight.Dn) logger.debug("Weight statistics: %r" % weights.weightStatistics) msd_matched = candidatejet.msdcorr * self._msdSF[self._year] * ( genflavor > 0) + candidatejet.msdcorr * (genflavor == 0) regions = { 'signal': [ 'noleptons', 'minjetkin', 'met', 'jetid', 'antiak4btagMediumOppHem', 'n2ddt', 'trigger', 'lumimask', 'metfilter' ], 'signal_noddt': [ 'noleptons', 'minjetkin', 'met', 'jetid', 'antiak4btagMediumOppHem', 'trigger', 'lumimask', 'metfilter' ], 'muoncontrol': [ 'minjetkinmu', 'jetid', 'n2ddt', 'ak4btagMedium08', 'onemuon', 'muonkin', 'muonDphiAK8', 'muontrigger', 'lumimask', 'metfilter' ], 'muoncontrol_noddt': [ 'minjetkinmu', 'jetid', 'ak4btagMedium08', 'onemuon', 'muonkin', 'muonDphiAK8', 'muontrigger', 'lumimask', 'metfilter' ], 'wtag': [ 'tightMuon', 'onemuon', 'noNearMuon', 'ak4btagNearMu', 'met40p', 'ak4btagMediumOppHem', 'minWjetpteta', 'ptrecoW', 'muontrigger', 'lumimask', 'metfilter' ], 'wtag2': [ 'tightMuon', 'onemuon', 'met40p', 'ptrecoW200', 'ak4btagOld', 'muontrigger', 'lumimask', 'metfilter' ], 'noselection': [], } def normalize(val, cut): if cut is None: ar = ak.to_numpy(ak.fill_none(val, np.nan)) return ar else: ar = ak.to_numpy(ak.fill_none(val[cut], np.nan)) return ar import time tic = time.time() if shift_name is None: for region, cuts in regions.items(): allcuts = set([]) cut = selection.all(*allcuts) output['cutflow_msd'].fill(region=region, genflavor=normalize( genflavor, None), cut=0, weight=weights.weight(), msd=normalize(msd_matched, None)) output['cutflow_eta'].fill(region=region, genflavor=normalize(genflavor, cut), cut=0, weight=weights.weight()[cut], eta=normalize( candidatejet.eta, cut)) output['cutflow_pt'].fill(region=region, genflavor=normalize(genflavor, cut), cut=0, weight=weights.weight()[cut], pt=normalize(candidatejet.pt, cut)) for i, cut in enumerate(cuts + ['ddcvbpass', 'ddcpass']): allcuts.add(cut) cut = selection.all(*allcuts) output['cutflow_msd'].fill(region=region, genflavor=normalize( genflavor, cut), cut=i + 1, weight=weights.weight()[cut], msd=normalize(msd_matched, cut)) output['cutflow_eta'].fill( region=region, genflavor=normalize(genflavor, cut), cut=i + 1, weight=weights.weight()[cut], eta=normalize(candidatejet.eta, cut)) output['cutflow_pt'].fill( region=region, genflavor=normalize(genflavor, cut), cut=i + 1, weight=weights.weight()[cut], pt=normalize(candidatejet.pt, cut)) if shift_name is None: systematics = [None] + list(weights.variations) else: systematics = [shift_name] def fill(region, systematic, wmod=None): selections = regions[region] cut = selection.all(*selections) sname = 'nominal' if systematic is None else systematic if wmod is None: if systematic in weights.variations: weight = weights.weight(modifier=systematic)[cut] else: weight = weights.weight()[cut] else: weight = weights.weight()[cut] * wmod[cut] output['templates'].fill( region=region, systematic=sname, genflavor=normalize(genflavor, cut), pt=normalize(candidatejet.pt, cut), msd=normalize(msd_matched, cut), ddb=normalize(bvl, cut), ddc=normalize(cvl, cut), ddcvb=normalize(cvb, cut), weight=weight, ) if region in [ 'wtag', 'wtag2', 'noselection' ]: # and sname in ['nominal', 'pileup_weightDown', 'pileup_weightUp', 'jet_triggerDown', 'jet_triggerUp']: output['wtag'].fill( region=region, systematic=sname, genflavor=normalize(genflavor, cut), # pt=normalize(candidatejet.pt, cut), msd=normalize(msd_matched, cut), n2ddt=normalize(candidatejet.n2ddt, cut), ddc=normalize(cvl, cut), ddcvb=normalize(cvb, cut), weight=weight, ) if not isRealData: if wmod is not None: _custom_weight = events.genWeight[cut] * wmod[cut] else: _custom_weight = np.ones_like(weight) output['genresponse_noweight'].fill( region=region, systematic=sname, pt=normalize(candidatejet.pt, cut), genpt=normalize(genBosonPt, cut), weight=_custom_weight, ) output['genresponse'].fill( region=region, systematic=sname, pt=normalize(candidatejet.pt, cut), genpt=normalize(genBosonPt, cut), weight=weight, ) if systematic is None: output['signal_opt'].fill( region=region, genflavor=normalize(genflavor, cut), ddc=normalize(cvl, cut), ddcvb=normalize(cvb, cut), weight=weight, ) output['signal_optb'].fill( region=region, genflavor=normalize(genflavor, cut), ddb=normalize(bvl, cut), weight=weight, ) for region in regions: cut = selection.all(*(set(regions[region]) - {'n2ddt'})) if shift_name is None: output['nminus1_n2ddt'].fill( region=region, n2ddt=normalize(candidatejet.n2ddt, cut), weight=weights.weight()[cut], ) for systematic in systematics: if isRealData and systematic is not None: continue fill(region, systematic) if shift_name is None and 'GluGluH' in dataset and 'LHEWeight' in events.fields: for i in range(9): fill(region, 'LHEScale_%d' % i, events.LHEScaleWeight[:, i]) for c in events.LHEWeight.fields[1:]: fill(region, 'LHEWeight_%s' % c, events.LHEWeight[c]) toc = time.time() output["filltime"] = toc - tic if shift_name is None: output["weightStats"] = weights.weightStatistics return {dataset: output}
def process(self, events): output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet)>=2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Electrons electron = Collections(ev, "Electron", "tightFCNC", 0, self.year).get() electron = electron[(electron.pt > 15) & (np.abs(electron.eta) < 2.4)] electron = electron[(electron.genPartIdx >= 0)] electron = electron[(np.abs(electron.matched_gen.pdgId)==11)] #from here on all leptons are gen-matched electron = electron[( (electron.genPartFlav==1) | (electron.genPartFlav==15) )] #and now they are all prompt leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1)) trailing_electron = electron[trailing_electron_idx] leading_parent = find_first_parent(leading_electron.matched_gen) trailing_parent = find_first_parent(trailing_electron.matched_gen) is_flipped = ( ( (electron.matched_gen.pdgId*(-1) == electron.pdgId) | (find_first_parent(electron.matched_gen)*(-1) == electron.pdgId) ) & (np.abs(electron.pdgId) == 11) ) flipped_electron = electron[is_flipped] flipped_electron = flipped_electron[(ak.fill_none(flipped_electron.pt, 0)>0)] flipped_electron = flipped_electron[~(ak.is_none(flipped_electron))] n_flips = ak.num(flipped_electron) ##Muons muon = Collections(ev, "Muon", "tightFCNC").get() muon = muon[(muon.pt > 15) & (np.abs(muon.eta) < 2.4)] muon = muon[(muon.genPartIdx >= 0)] muon = muon[(np.abs(muon.matched_gen.pdgId)==13)] #from here, all muons are gen-matched muon = muon[( (muon.genPartFlav==1) | (muon.genPartFlav==15) )] #and now they are all prompt ##Leptons lepton = ak.concatenate([muon, electron], axis=1) SSlepton = (ak.sum(lepton.charge, axis=1) != 0) & (ak.num(lepton)==2) OSlepton = (ak.sum(lepton.charge, axis=1) == 0) & (ak.num(lepton)==2) emulepton = (ak.num(electron) == 1) & (ak.num(muon) == 1) no_mumu = (ak.num(muon) <= 1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] #jets jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt') jet = jet[ak.argsort(jet.pt, ascending=False)] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match(jet, electron, deltaRCut=0.4)] ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi # setting up the various weights weight = Weights( len(ev) ) weight2 = Weights( len(ev)) if not dataset=='MuonEG': # generator weight weight.add("weight", ev.genWeight) weight2.add("weight", ev.genWeight) weight2.add("charge flip", self.charge_flip_ratio.flip_weight(electron)) #selections filters = getFilters(ev, year=self.year, dataset=dataset) ss = (SSlepton) os = (OSlepton) jet_all = (ak.num(jet) >= 2) diele = (ak.num(electron) == 2) emu = (emulepton) flips = (n_flips == 1) no_flips = (n_flips == 0) nmm = no_mumu selection = PackedSelection() selection.add('filter', (filters) ) selection.add('ss', ss ) selection.add('os', os ) selection.add('jet', jet_all ) selection.add('ee', diele) selection.add('emu', emu) selection.add('flip', flips) selection.add('nflip', no_flips) selection.add('no_mumu', nmm) bl_reqs = ['filter'] + ['jet'] bl_reqs_d = { sel: True for sel in bl_reqs } baseline = selection.require(**bl_reqs_d) f_reqs = bl_reqs + ['flip'] + ['ss'] + ['ee'] f_reqs_d = {sel: True for sel in f_reqs} flip_sel = selection.require(**f_reqs_d) f2_reqs = bl_reqs + ['flip'] + ['ss'] + ['emu'] f2_reqs_d = {sel: True for sel in f2_reqs} flip_sel2 = selection.require(**f2_reqs_d) f3_reqs = bl_reqs + ['flip'] + ['ss'] + ['no_mumu'] f3_reqs_d = {sel: True for sel in f3_reqs} flip_sel3 = selection.require(**f3_reqs_d) nf_reqs = bl_reqs + ['nflip'] + ['os'] + ['ee'] nf_reqs_d = {sel: True for sel in nf_reqs} n_flip_sel = selection.require(**nf_reqs_d) nf2_reqs = bl_reqs + ['nflip'] + ['os'] + ['emu'] nf2_reqs_d = {sel: True for sel in nf2_reqs} n_flip_sel2 = selection.require(**nf2_reqs_d) nf3_reqs = bl_reqs + ['nflip'] + ['os'] + ['no_mumu'] nf3_reqs_d = {sel: True for sel in nf3_reqs} n_flip_sel3 = selection.require(**nf3_reqs_d) s_reqs = bl_reqs + ['ss'] + ['no_mumu'] s_reqs_d = { sel: True for sel in s_reqs } ss_sel = selection.require(**s_reqs_d) o_reqs = bl_reqs + ['os'] + ['no_mumu'] o_reqs_d = {sel: True for sel in o_reqs } os_sel = selection.require(**o_reqs_d) ees_reqs = bl_reqs + ['ss'] + ['ee'] ees_reqs_d = { sel: True for sel in ees_reqs } eess_sel = selection.require(**ees_reqs_d) eeo_reqs = bl_reqs + ['os'] + ['ee'] eeo_reqs_d = {sel: True for sel in eeo_reqs } eeos_sel = selection.require(**eeo_reqs_d) ems_reqs = bl_reqs + ['ss'] + ['emu'] ems_reqs_d = { sel: True for sel in ems_reqs } emss_sel = selection.require(**ems_reqs_d) emo_reqs = bl_reqs + ['os'] + ['emu'] emo_reqs_d = {sel: True for sel in emo_reqs } emos_sel = selection.require(**emo_reqs_d) #outputs output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[baseline], weight=weight.weight()[baseline]) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(lepton)[ss_sel], weight=weight.weight()[ss_sel]) output['N_ele2'].fill(dataset=dataset, multiplicity=ak.num(lepton)[os_sel], weight=weight2.weight()[os_sel]) output['electron_flips'].fill(dataset=dataset, multiplicity = n_flips[flip_sel], weight=weight.weight()[flip_sel]) output['electron_flips2'].fill(dataset=dataset, multiplicity = n_flips[n_flip_sel], weight=weight2.weight()[n_flip_sel]) output['electron_flips3'].fill(dataset=dataset, multiplicity = n_flips[flip_sel2], weight=weight.weight()[flip_sel2]) output['electron_flips4'].fill(dataset=dataset, multiplicity = n_flips[n_flip_sel2], weight=weight2.weight()[n_flip_sel2]) output["electron"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[flip_sel3].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[flip_sel3].eta))), weight = weight.weight()[flip_sel3] ) output["electron2"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[n_flip_sel3].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[n_flip_sel3].eta))), weight = weight2.weight()[n_flip_sel3] ) output["flipped_electron"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[flip_sel].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[flip_sel].eta))), weight = weight.weight()[flip_sel] ) output["flipped_electron2"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[n_flip_sel].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[n_flip_sel].eta))), weight = weight2.weight()[n_flip_sel] ) output["flipped_electron3"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[flip_sel2].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[flip_sel2].eta))), weight = weight.weight()[flip_sel2] ) output["flipped_electron4"].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_electron[n_flip_sel2].pt)), eta = np.abs(ak.to_numpy(ak.flatten(leading_electron[n_flip_sel2].eta))), weight = weight2.weight()[n_flip_sel2] ) #output["lepton_parent"].fill( # dataset = dataset, # pdgID = np.abs(ak.to_numpy(ak.flatten(leading_parent[ss_sel]))), # weight = weight.weight()[ss_sel] #) # #output["lepton_parent2"].fill( # dataset = dataset, # pdgID = np.abs(ak.to_numpy(ak.flatten(trailing_parent[ss_sel]))), # weight = weight.weight()[ss_sel] #) return output
def process(self, events): events = events[ ak.num(events.Jet) > 0] #corrects for rare case where there isn't a single jet in event output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet) >= 0 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Muons #muon = ev.Muon ## Electrons electron = Collections(ev, "Electron", "tightSSTTH").get() fakeableelectron = Collections(ev, "Electron", "fakeableSSTTH").get() #vetoelectron = Collections(ev, "Electron", "vetoTTH").get() # "loose" electrons muon = Collections(ev, "Muon", "tightSSTTH").get() fakeablemuon = Collections(ev, "Muon", "fakeableSSTTH").get() #vetomuon = Collections(ev, "Muon", "vetoTTH").get() # "loose" muons ##Jets Jets = events.Jet ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi # define the weight weight = Weights(len(ev)) if not dataset == 'MuonEG': # generator weight weight.add("weight", ev.genWeight) # output['lead_lep'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(leading_lepton[baseline].pt)), # eta = ak.to_numpy(ak.flatten(leading_lepton[baseline].eta)), # phi = ak.to_numpy(ak.flatten(leading_lepton[baseline].phi)), # weight = weight.weight()[baseline] # ) jets = getJets(ev, maxEta=2.4, minPt=25, pt_var='pt') output['single_mu_fakeable'].fill( dataset=dataset, pt=ak.to_numpy( ak.flatten(fakeablemuon[ (ak.num(fakeablemuon) == 1) & (ak.num(muon) == 0) & (ak.num(jets[~match(jets, fakeablemuon, deltaRCut=0.7)]) >= 1)].conePt)), eta=ak.to_numpy( ak.flatten(fakeablemuon[ (ak.num(fakeablemuon) == 1) & (ak.num(muon) == 0) & (ak.num(jets[~match(jets, fakeablemuon, deltaRCut=0.7)]) >= 1)].eta))) output['single_mu'].fill( dataset=dataset, pt=ak.to_numpy( ak.flatten( muon[(ak.num(fakeablemuon) == 0) & (ak.num(muon) == 1) & (ak.num(jets[~match(jets, muon, deltaRCut=0.7)]) >= 1)].conePt)), eta=ak.to_numpy( ak.flatten( muon[(ak.num(fakeablemuon) == 0) & (ak.num(muon) == 1) & (ak.num(jets[~match(jets, muon, deltaRCut=0.7)]) >= 1)].eta))) output['single_e_fakeable'].fill( dataset=dataset, pt=ak.to_numpy( ak.flatten(fakeableelectron[(ak.num(fakeableelectron) == 1) & ( ak.num(electron) == 0) & (ak.num( jets[~match(jets, fakeableelectron, deltaRCut=0.7)]) >= 1)].conePt)), eta=np.abs( ak.to_numpy( ak.flatten(fakeableelectron[ (ak.num(fakeableelectron) == 1) & (ak.num(electron) == 0) & (ak.num( jets[~match(jets, fakeableelectron, deltaRCut=0.7)] ) >= 1)].etaSC)))) output['single_e'].fill( dataset=dataset, pt=ak.to_numpy( ak.flatten(electron[ (ak.num(fakeableelectron) == 0) & (ak.num(electron) == 1) & (ak.num(jets[~match(jets, electron, deltaRCut=0.7)]) >= 1)].conePt)), eta=np.abs( ak.to_numpy( ak.flatten(electron[ (ak.num(fakeableelectron) == 0) & (ak.num(electron) == 1) & (ak.num(jets[~match(jets, electron, deltaRCut=0.7)]) >= 1)].etaSC)))) return output
def get_event_weights(events, year: str, corrections, isTTbar=False, isSignal=False): weights = Weights(len(events), storeIndividual=True) # store individual variations ## only apply to MC if not events.metadata["dataset"].startswith("data_Single"): ## Prefire Corrections if (year != "2018") and (corrections["Prefire"] == True) and ("L1PreFiringWeight" in events.fields): weights.add("Prefire", ak.copy(events["L1PreFiringWeight"]["Nom"]), ak.copy(events["L1PreFiringWeight"]["Up"]), ak.copy(events["L1PreFiringWeight"]["Dn"]) ) ## Generator Weights weights.add("genweight", ak.copy(events["genWeight"])) ## Pileup Reweighting if "Pileup" in corrections.keys(): # treat interference samples differently if (events.metadata["dataset"].startswith("AtoTT") or events.metadata["dataset"].startswith("HtoTT")) and ("Int" in events.metadata["dataset"]): central_pu_wt = ak.where(events["genWeight"] > 0, corrections["Pileup"]["%s_pos" % events.metadata["dataset"]]["central"](events["Pileup"]["nTrueInt"]),\ corrections["Pileup"]["%s_neg" % events.metadata["dataset"]]["central"](events["Pileup"]["nTrueInt"])) up_pu_wt = ak.where(events["genWeight"] > 0, corrections["Pileup"]["%s_pos" % events.metadata["dataset"]]["up"](events["Pileup"]["nTrueInt"]),\ corrections["Pileup"]["%s_neg" % events.metadata["dataset"]]["up"](events["Pileup"]["nTrueInt"])) down_pu_wt = ak.where(events["genWeight"] > 0, corrections["Pileup"]["%s_pos" % events.metadata["dataset"]]["down"](events["Pileup"]["nTrueInt"]),\ corrections["Pileup"]["%s_neg" % events.metadata["dataset"]]["down"](events["Pileup"]["nTrueInt"])) weights.add("Pileup", ak.copy(central_pu_wt), ak.copy(up_pu_wt), ak.copy(down_pu_wt) ) else: weights.add("Pileup", ak.copy(corrections["Pileup"][events.metadata["dataset"]]["central"](events["Pileup"]["nTrueInt"])), ak.copy(corrections["Pileup"][events.metadata["dataset"]]["up"](events["Pileup"]["nTrueInt"])), ak.copy(corrections["Pileup"][events.metadata["dataset"]]["down"](events["Pileup"]["nTrueInt"])) ) ## PS and LHE weights for ttbar events if isTTbar: ## PS Weight variations # PSWeight definitions can be found here: https://github.com/cms-sw/cmssw/blob/CMSSW_10_6_X/PhysicsTools/NanoAOD/plugins/GenWeightsTableProducer.cc#L543-L546 psweights = events["PSWeight"] weights.add("ISR", np.ones(len(events)), ak.copy(psweights[:, 0]), # (ISR=2, FSR=1) ak.copy(psweights[:, 2]), # (ISR=0.5, FSR=1) ) weights.add("FSR", np.ones(len(events)), ak.copy(psweights[:, 1]), # (ISR=1, FSR=2) ak.copy(psweights[:, 3]), # (ISR=1, FSR=0.5) ) ## LHEScale Weight Variations # LHEScaleWeight definitions can be found here: https://cms-nanoaod-integration.web.cern.ch/integration/master/mc94X_doc.html#LHE lheweights = events["LHEScaleWeight"] weights.add("FACTOR", np.ones(len(events)), ak.copy(lheweights[:, 5]), # (muR=1, muF=2) ak.copy(lheweights[:, 3]), # (muR=1, muF=0.5) ) weights.add("RENORM", np.ones(len(events)), ak.copy(lheweights[:, 7]), # (muR=2, muF=1) ak.copy(lheweights[:, 1]), # (muR=0.5, muF=1) ) weights.add("RENORM_FACTOR_SAME", np.ones(len(events)), ak.copy(lheweights[:, 8]), # (muR=2, muF=2), RENORM_UP_FACTOR_UP ak.copy(lheweights[:, 0]), # (muR=0.5, muF=0.5), RENORM_DW_FACTOR_DW ) weights.add("RENORM_FACTOR_DIFF", np.ones(len(events)), ak.copy(lheweights[:, 6]), # (muR=2, muF=0.5), RENORM_UP_FACTOR_DW ak.copy(lheweights[:, 2]), # (muR=0.5, muF=2), RENORM_DW_FACTOR_UP ) ## PS and LHE weights for signal events if isSignal: ## PS Weight variations # PSWeight definitions can be found here: https://github.com/cms-sw/cmssw/blob/CMSSW_10_6_X/PhysicsTools/NanoAOD/plugins/GenWeightsTableProducer.cc#L543-L546 #psweights = events["PSWeight"] #weights.add("ISR", # np.ones(len(events)), # ak.copy(psweights[:, 0]), # (ISR=2, FSR=1) # ak.copy(psweights[:, 2]), # (ISR=0.5, FSR=1) #) #weights.add("FSR", # np.ones(len(events)), # ak.copy(psweights[:, 1]), # (ISR=1, FSR=2) # ak.copy(psweights[:, 3]), # (ISR=1, FSR=0.5) #) ## LHEScale Weight Variations # LHEScaleWeight definitions can be found here: https://cms-nanoaod-integration.web.cern.ch/integration/master/mc94X_doc.html#LHE lheweights = events["LHEScaleWeight"] weights.add("AH_FACTOR", np.ones(len(events)), ak.copy(lheweights[:, 5]), # (muR=1, muF=2) ak.copy(lheweights[:, 3]), # (muR=1, muF=0.5) ) weights.add("AH_RENORM", np.ones(len(events)), ak.copy(lheweights[:, 7]), # (muR=2, muF=1) ak.copy(lheweights[:, 1]), # (muR=0.5, muF=1) ) weights.add("AH_RENORM_FACTOR_SAME", np.ones(len(events)), ak.copy(lheweights[:, 8]), # (muR=2, muF=2), RENORM_UP_FACTOR_UP ak.copy(lheweights[:, 0]), # (muR=0.5, muF=0.5), RENORM_DW_FACTOR_DW ) weights.add("AH_RENORM_FACTOR_DIFF", np.ones(len(events)), ak.copy(lheweights[:, 6]), # (muR=2, muF=0.5), RENORM_UP_FACTOR_DW ak.copy(lheweights[:, 2]), # (muR=0.5, muF=2), RENORM_DW_FACTOR_UP ) return weights
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet)>2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): ## Generated leptons gen_lep = ev.GenL leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))] trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))] # Get the leptons. This has changed a couple of times now, but we are using fakeable objects as baseline leptons. # The added p4 instance has the corrected pt (conePt for fakeable) and should be used for any following selection or calculation # Any additional correction (if we choose to do so) should be added here, e.g. Rochester corrections, ... ## Muons mu_v = Collections(ev, "Muon", "vetoTTH", year=year).get() # these include all muons, tight and fakeable mu_t = Collections(ev, "Muon", "tightSSTTH", year=year).get() mu_f = Collections(ev, "Muon", "fakeableSSTTH", year=year).get() muon = ak.concatenate([mu_t, mu_f], axis=1) muon['p4'] = get_four_vec_fromPtEtaPhiM(muon, get_pt(muon), muon.eta, muon.phi, muon.mass, copy=False) #FIXME new ## Electrons el_v = Collections(ev, "Electron", "vetoTTH", year=year).get() el_t = Collections(ev, "Electron", "tightSSTTH", year=year).get() el_f = Collections(ev, "Electron", "fakeableSSTTH", year=year).get() electron = ak.concatenate([el_t, el_f], axis=1) electron['p4'] = get_four_vec_fromPtEtaPhiM(electron, get_pt(electron), electron.eta, electron.phi, electron.mass, copy=False) #FIXME new if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): el_t_p = prompt(el_t) el_t_np = nonprompt(el_t) el_f_p = prompt(el_f) el_f_np = nonprompt(el_f) mu_t_p = prompt(mu_t) mu_t_np = nonprompt(mu_t) mu_f_p = prompt(mu_f) mu_f_np = nonprompt(mu_f) is_flipped = ( (el_t_p.matched_gen.pdgId*(-1) == el_t_p.pdgId) & (abs(el_t_p.pdgId) == 11) ) el_t_p_cc = el_t_p[~is_flipped] # this is tight, prompt, and charge consistent el_t_p_cf = el_t_p[is_flipped] # this is tight, prompt, and charge flipped ## Merge electrons and muons. These are fakeable leptons now lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.p4.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.p4.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] dilepton_mass = (leading_lepton.p4 + trailing_lepton.p4).mass dilepton_pt = (leading_lepton.p4 + trailing_lepton.p4).pt #dilepton_dR = delta_r(leading_lepton, trailing_lepton) dilepton_dR = leading_lepton.p4.delta_r(trailing_lepton.p4) lepton_pdgId_pt_ordered = ak.fill_none(ak.pad_none(lepton[ak.argsort(lepton.p4.pt, ascending=False)].pdgId, 2, clip=True), 0) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): n_nonprompt = getNonPromptFromFlavour(electron) + getNonPromptFromFlavour(muon) n_chargeflip = getChargeFlips(electron, ev.GenPart) + getChargeFlips(muon, ev.GenPart) gp = ev.GenPart gp_e = gp[((abs(gp.pdgId)==11)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))] gp_m = gp[((abs(gp.pdgId)==13)&(gp.status==1)&((gp.statusFlags&(1<<0))==1)&(gp.statusFlags&(1<<8)==256))] n_gen_lep = ak.num(gp_e) + ak.num(gp_m) else: n_gen_lep = np.zeros(len(ev)) LL = (n_gen_lep > 2) # this is the classifier for LL events (should mainly be ttZ/tZ/WZ...) mt_lep_met = mt(lepton.p4.pt, lepton.p4.phi, ev.MET.pt, ev.MET.phi) min_mt_lep_met = ak.min(mt_lep_met, axis=1) ## Tau and other stuff tau = getTaus(ev) tau = tau[~match(tau, muon, deltaRCut=0.4)] tau = tau[~match(tau, electron, deltaRCut=0.4)] track = getIsoTracks(ev) ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort(jet.pt_nom, ascending=False)] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match(jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta)<2.4)] btag = getBTagsDeepFlavB(jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:,:2] bl = cross(lepton, high_score_btag) bl_dR = delta_r(bl['0'], bl['1']) min_bl_dR = ak.min(bl_dR, axis=1) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax(fwd.p, axis=1))] # highest momentum spectator # try to get either the most forward light jet, or if there's more than one with eta>1.7, the highest pt one most_fwd = light[ak.argsort(abs(light.eta))][:,0:1] #most_fwd = light[ak.singletons(ak.argmax(abs(light.eta)))] best_fwd = ak.concatenate([j_fwd, most_fwd], axis=1)[:,0:1] jf = cross(j_fwd, jet) mjf = (jf['0']+jf['1']).mass j_fwd2 = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd delta_eta = abs(j_fwd2.eta - j_fwd.eta) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) #st = met_pt + ht + ak.sum(get_pt(muon), axis=1) + ak.sum(get_pt(electron), axis=1) st = met_pt + ht + ak.sum(lepton.p4.pt, axis=1) # define the weight weight = Weights( len(ev) ) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): # lumi weight weight.add("weight", ev.weight*cfg['lumi'][self.year]) # PU weight weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) cutflow = Cutflow(output, ev, weight=weight) # slightly restructured # calculate everything from loose, require two tights on top # since n_tight == n_loose == 2, the tight and loose leptons are the same in the end # in this selection we'll get events with exactly two fakeable+tight and two loose leptons. sel = Selection( dataset = dataset, events = ev, year = self.year, ele = electron, ele_veto = el_v, mu = muon, mu_veto = mu_v, jet_all = jet, jet_central = central, jet_btag = btag, jet_fwd = fwd, jet_light = light, met = ev.MET, ) baseline = sel.dilep_baseline(cutflow=cutflow, SS=True, omit=['N_fwd>0']) baseline_OS = sel.dilep_baseline(cutflow=cutflow, SS=False, omit=['N_fwd>0']) # this is for charge flip estimation if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): BL = (baseline & ((ak.num(el_t_p_cc)+ak.num(mu_t_p))==2)) # this is the MC baseline for events with two tight prompt leptons BL_incl = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2)) # this is the MC baseline for events with two tight leptons np_est_sel_mc = (baseline & \ ((((ak.num(el_t_p_cc)+ak.num(mu_t_p))==1) & ((ak.num(el_f_np)+ak.num(mu_f_np))==1)) | (((ak.num(el_t_p_cc)+ak.num(mu_t_p))==0) & ((ak.num(el_f_np)+ak.num(mu_f_np))==2)) )) # no overlap between tight and nonprompt, and veto on additional leptons. this should be enough np_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_np)+ak.num(mu_t_np))>=1) ) # two tight leptons, at least one nonprompt np_est_sel_data = (baseline & ~baseline) # this has to be false cf_est_sel_mc = (baseline_OS & ((ak.num(el_t_p)+ak.num(mu_t_p))==2)) cf_obs_sel_mc = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2) & ((ak.num(el_t_p_cf))>=1) ) # two tight leptons, at least one electron charge flip cf_est_sel_data = (baseline & ~baseline) # this has to be false weight_np_mc = self.nonpromptWeight.get(el_f_np, mu_f_np, meas='TT') weight_cf_mc = self.chargeflipWeight.flip_weight(el_t_p) else: BL = (baseline & ((ak.num(el_t)+ak.num(mu_t))==2)) BL_incl = BL np_est_sel_mc = (baseline & ~baseline) np_obs_sel_mc = (baseline & ~baseline) np_est_sel_data = (baseline & (ak.num(el_t)+ak.num(mu_t)==1) & (ak.num(el_f)+ak.num(mu_f)==1) ) cf_est_sel_mc = (baseline & ~baseline) cf_obs_sel_mc = (baseline & ~baseline) cf_est_sel_data = (baseline_OS & ((ak.num(el_t)+ak.num(mu_t))==2) ) weight_np_mc = np.zeros(len(ev)) weight_cf_mc = np.zeros(len(ev)) #rle = ak.to_numpy(ak.zip([ev.run, ev.luminosityBlock, ev.event])) run_ = ak.to_numpy(ev.run) lumi_ = ak.to_numpy(ev.luminosityBlock) event_ = ak.to_numpy(ev.event) if False: output['%s_run'%dataset] += processor.column_accumulator(run_[BL]) output['%s_lumi'%dataset] += processor.column_accumulator(lumi_[BL]) output['%s_event'%dataset] += processor.column_accumulator(event_[BL]) weight_BL = weight.weight()[BL] # this is just a shortened weight list for the two prompt selection weight_np_data = self.nonpromptWeight.get(el_f, mu_f, meas='data') weight_cf_data = self.chargeflipWeight.flip_weight(el_t) out_sel = (BL | np_est_sel_mc | cf_est_sel_mc) dummy = (np.ones(len(ev))==1) def fill_multiple_np(hist, arrays, add_sel=dummy): #reg_sel = [BL, np_est_sel_mc, np_obs_sel_mc, np_est_sel_data, cf_est_sel_mc, cf_obs_sel_mc, cf_est_sel_data], #print ('len', len(reg_sel[0])) #print ('sel', reg_sel[0]) reg_sel = [BL&add_sel, BL_incl&add_sel, np_est_sel_mc&add_sel, np_obs_sel_mc&add_sel, np_est_sel_data&add_sel, cf_est_sel_mc&add_sel, cf_obs_sel_mc&add_sel, cf_est_sel_data&add_sel], fill_multiple( hist, datasets=[ dataset, # only prompt contribution from process dataset+"_incl", # everything from process (inclusive MC truth) "np_est_mc", # MC based NP estimate "np_obs_mc", # MC based NP observation "np_est_data", "cf_est_mc", "cf_obs_mc", "cf_est_data", ], arrays=arrays, selections=reg_sel[0], # no idea where the additional dimension is coming from... weights=[ weight.weight()[reg_sel[0][0]], weight.weight()[reg_sel[0][1]], weight.weight()[reg_sel[0][2]]*weight_np_mc[reg_sel[0][2]], weight.weight()[reg_sel[0][3]], weight.weight()[reg_sel[0][4]]*weight_np_data[reg_sel[0][4]], weight.weight()[reg_sel[0][5]]*weight_cf_mc[reg_sel[0][5]], weight.weight()[reg_sel[0][6]], weight.weight()[reg_sel[0][7]]*weight_cf_data[reg_sel[0][7]], ], ) if self.evaluate or self.dump: # define the inputs to the NN # this is super stupid. there must be a better way. # used a np.stack which is ok performance wise. pandas data frame seems to be slow and memory inefficient #FIXME no n_b, n_fwd back in v13/v14 of the DNN NN_inputs_d = { 'n_jet': ak.to_numpy(ak.num(jet)), 'n_fwd': ak.to_numpy(ak.num(fwd)), 'n_b': ak.to_numpy(ak.num(btag)), 'n_tau': ak.to_numpy(ak.num(tau)), #'n_track': ak.to_numpy(ak.num(track)), 'st': ak.to_numpy(st), 'met': ak.to_numpy(ev.MET.pt), 'mjj_max': ak.to_numpy(ak.fill_none(ak.max(mjf, axis=1),0)), 'delta_eta_jj': ak.to_numpy(pad_and_flatten(delta_eta)), 'lead_lep_pt': ak.to_numpy(pad_and_flatten(leading_lepton.p4.pt)), 'lead_lep_eta': ak.to_numpy(pad_and_flatten(leading_lepton.p4.eta)), 'sublead_lep_pt': ak.to_numpy(pad_and_flatten(trailing_lepton.p4.pt)), 'sublead_lep_eta': ak.to_numpy(pad_and_flatten(trailing_lepton.p4.eta)), 'dilepton_mass': ak.to_numpy(pad_and_flatten(dilepton_mass)), 'dilepton_pt': ak.to_numpy(pad_and_flatten(dilepton_pt)), 'fwd_jet_pt': ak.to_numpy(pad_and_flatten(best_fwd.pt)), 'fwd_jet_p': ak.to_numpy(pad_and_flatten(best_fwd.p)), 'fwd_jet_eta': ak.to_numpy(pad_and_flatten(best_fwd.eta)), 'lead_jet_pt': ak.to_numpy(pad_and_flatten(jet[:, 0:1].pt)), 'sublead_jet_pt': ak.to_numpy(pad_and_flatten(jet[:, 1:2].pt)), 'lead_jet_eta': ak.to_numpy(pad_and_flatten(jet[:, 0:1].eta)), 'sublead_jet_eta': ak.to_numpy(pad_and_flatten(jet[:, 1:2].eta)), 'lead_btag_pt': ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].pt)), 'sublead_btag_pt': ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].pt)), 'lead_btag_eta': ak.to_numpy(pad_and_flatten(high_score_btag[:, 0:1].eta)), 'sublead_btag_eta': ak.to_numpy(pad_and_flatten(high_score_btag[:, 1:2].eta)), 'min_bl_dR': ak.to_numpy(ak.fill_none(min_bl_dR, 0)), 'min_mt_lep_met': ak.to_numpy(ak.fill_none(min_mt_lep_met, 0)), } if self.dump: for k in NN_inputs_d.keys(): output[k] += processor.column_accumulator(NN_inputs_d[k][out_sel]) if self.evaluate: NN_inputs = np.stack( [NN_inputs_d[k] for k in NN_inputs_d.keys()] ) NN_inputs = np.nan_to_num(NN_inputs, 0, posinf=1e5, neginf=-1e5) # events with posinf/neginf/nan will not pass the BL selection anyway NN_inputs = np.moveaxis(NN_inputs, 0, 1) # this is needed for a np.stack (old version) model, scaler = load_onnx_model(self.training) try: NN_inputs_scaled = scaler.transform(NN_inputs) NN_pred = predict_onnx(model, NN_inputs_scaled) best_score = np.argmax(NN_pred, axis=1) except ValueError: print ("Problem with prediction. Showing the shapes here:") print (np.shape(NN_inputs)) print (np.shape(weight_BL)) NN_pred = np.array([]) best_score = np.array([]) NN_inputs_scaled = NN_inputs raise ##k.clear_session() #FIXME below needs to be fixed again with changed NN evaluation. Should work now fill_multiple_np(output['node'], {'multiplicity':best_score}) fill_multiple_np(output['node0_score_incl'], {'score':NN_pred[:,0]}) fill_multiple_np(output['node1_score_incl'], {'score':NN_pred[:,1]}) fill_multiple_np(output['node2_score_incl'], {'score':NN_pred[:,2]}) fill_multiple_np(output['node3_score_incl'], {'score':NN_pred[:,3]}) fill_multiple_np(output['node4_score_incl'], {'score':NN_pred[:,4]}) fill_multiple_np(output['node0_score'], {'score':NN_pred[:,0]}, add_sel=(best_score==0)) fill_multiple_np(output['node1_score'], {'score':NN_pred[:,1]}, add_sel=(best_score==1)) fill_multiple_np(output['node2_score'], {'score':NN_pred[:,2]}, add_sel=(best_score==2)) fill_multiple_np(output['node3_score'], {'score':NN_pred[:,3]}, add_sel=(best_score==3)) fill_multiple_np(output['node4_score'], {'score':NN_pred[:,4]}, add_sel=(best_score==4)) #SR_sel_pp = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId<0))) #SR_sel_mm = ((best_score==0) & ak.flatten((leading_lepton[BL].pdgId>0))) #leading_lepton_BL = leading_lepton[BL] #output['lead_lep_SR_pp'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_pp].pt)), # weight = weight_BL[SR_sel_pp] #) #output['lead_lep_SR_mm'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(leading_lepton_BL[SR_sel_mm].pt)), # weight = weight_BL[SR_sel_mm] #) del model del scaler del NN_inputs, NN_inputs_scaled, NN_pred labels = {'topW_v3': 0, 'TTW':1, 'TTZ': 2, 'TTH': 3, 'ttbar': 4, 'rare':5, 'diboson':6} # these should be all? if dataset in labels: label_mult = labels[dataset] else: label_mult = 7 # data or anything else if self.dump: output['label'] += processor.column_accumulator(np.ones(len(ev[out_sel])) * label_mult) output['SS'] += processor.column_accumulator(ak.to_numpy(BL[out_sel])) output['OS'] += processor.column_accumulator(ak.to_numpy(cf_est_sel_mc[out_sel])) output['AR'] += processor.column_accumulator(ak.to_numpy(np_est_sel_mc[out_sel])) output['LL'] += processor.column_accumulator(ak.to_numpy(LL[out_sel])) output['weight'] += processor.column_accumulator(ak.to_numpy(weight.weight()[out_sel])) output['weight_np'] += processor.column_accumulator(ak.to_numpy(weight_np_mc[out_sel])) output['weight_cf'] += processor.column_accumulator(ak.to_numpy(weight_cf_mc[out_sel])) # first, make a few super inclusive plots output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight_BL) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight_BL) fill_multiple_np(output['N_jet'], {'multiplicity': ak.num(jet)}) fill_multiple_np(output['N_b'], {'multiplicity': ak.num(btag)}) fill_multiple_np(output['N_central'], {'multiplicity': ak.num(central)}) fill_multiple_np(output['N_ele'], {'multiplicity':ak.num(electron)}) fill_multiple_np(output['N_mu'], {'multiplicity':ak.num(muon)}) fill_multiple_np(output['N_fwd'], {'multiplicity':ak.num(fwd)}) fill_multiple_np(output['ST'], {'ht': st}) fill_multiple_np(output['HT'], {'ht': ht}) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight_BL) output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight_BL) output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight_BL) output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight_BL) output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight_BL) output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight_BL) output['chargeFlip_vs_nonprompt'].fill(dataset=dataset, n1=n_chargeflip[BL], n2=n_nonprompt[BL], n_ele=ak.num(electron)[BL], weight=weight_BL) fill_multiple_np(output['MET'], {'pt':ev.MET.pt, 'phi':ev.MET.phi}) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): output['lead_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)), weight = weight_BL ) output['trail_gen_lep'].fill( dataset = dataset, pt = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)), eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)), phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)), weight = weight_BL ) fill_multiple_np( output['lead_lep'], { 'pt': pad_and_flatten(leading_lepton.p4.pt), 'eta': pad_and_flatten(leading_lepton.eta), 'phi': pad_and_flatten(leading_lepton.phi), }, ) fill_multiple_np( output['trail_lep'], { 'pt': pad_and_flatten(trailing_lepton.p4.pt), 'eta': pad_and_flatten(trailing_lepton.eta), 'phi': pad_and_flatten(trailing_lepton.phi), }, ) output['j1'].fill( dataset = dataset, pt = ak.flatten(jet.pt_nom[:, 0:1][BL]), eta = ak.flatten(jet.eta[:, 0:1][BL]), phi = ak.flatten(jet.phi[:, 0:1][BL]), weight = weight_BL ) output['j2'].fill( dataset = dataset, pt = ak.flatten(jet[:, 1:2][BL].pt_nom), eta = ak.flatten(jet[:, 1:2][BL].eta), phi = ak.flatten(jet[:, 1:2][BL].phi), weight = weight_BL ) output['j3'].fill( dataset = dataset, pt = ak.flatten(jet[:, 2:3][BL].pt_nom), eta = ak.flatten(jet[:, 2:3][BL].eta), phi = ak.flatten(jet[:, 2:3][BL].phi), weight = weight_BL ) fill_multiple_np( output['fwd_jet'], { 'pt': pad_and_flatten(best_fwd.pt), 'eta': pad_and_flatten(best_fwd.eta), 'phi': pad_and_flatten(best_fwd.phi), }, ) #output['fwd_jet'].fill( # dataset = dataset, # pt = ak.flatten(j_fwd[BL].pt), # eta = ak.flatten(j_fwd[BL].eta), # phi = ak.flatten(j_fwd[BL].phi), # weight = weight_BL #) output['high_p_fwd_p'].fill(dataset=dataset, p = ak.flatten(best_fwd[BL].p), weight = weight_BL) return output
def process(self, events): output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet) >= 0 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Muons muon = ev.Muon ## Electrons electron = ev.Electron ## Merge electrons and muons - this should work better now in ak1 dilepton = cross(muon, electron) SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0, axis=1) lepton = ak.concatenate([muon, electron], axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi # define the weight weight = Weights(len(ev)) if not dataset == 'MuonEG': # generator weight weight.add("weight", ev.genWeight) filters = getFilters(ev, year=self.year, dataset=dataset) dilep = ((ak.num(electron) + ak.num(muon)) == 2) selection = PackedSelection() selection.add('dilep', dilep) selection.add('filter', (filters)) bl_reqs = ['dilep', 'filter'] bl_reqs_d = {sel: True for sel in bl_reqs} baseline = selection.require(**bl_reqs_d) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(electron)[baseline], weight=weight.weight()[baseline]) output['N_mu'].fill(dataset=dataset, multiplicity=ak.num(muon)[baseline], weight=weight.weight()[baseline]) output['lead_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[baseline].pt)), eta=ak.to_numpy(ak.flatten(leading_lepton[baseline].eta)), phi=ak.to_numpy(ak.flatten(leading_lepton[baseline].phi)), weight=weight.weight()[baseline]) return output
def process(self, events): output = self.accumulator.identity() output['total']['all'] += len(events) # use a very loose preselection to filter the events presel = ak.num(events.Jet) > 2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() gen_lep = ev.GenL ## Muons muon = Collections(ev, "Muon", "vetoTTH").get() tightmuon = Collections(ev, "Muon", "tightSSTTH").get() dimuon = choose(muon, 2) SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1) leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1)) leading_muon = muon[leading_muon_idx] ## Electrons electron = Collections(ev, "Electron", "vetoTTH").get() tightelectron = Collections(ev, "Electron", "tightSSTTH").get() dielectron = choose(electron, 2) SSelectron = ak.any( (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1) leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] ## Merge electrons and muons - this should work better now in ak1 dilepton = cross(muon, electron) SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0, axis=1) lepton = ak.concatenate([muon, electron], axis=1) lepton = get_four_vec(lepton) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = get_four_vec(lepton[leading_lepton_idx]) trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = get_four_vec(lepton[trailing_lepton_idx]) dilepton_mass = (leading_lepton + trailing_lepton).mass dilepton_pt = (leading_lepton + trailing_lepton).pt dilepton_dR = delta_r(leading_lepton, trailing_lepton) mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi) min_mt_lep_met = ak.min(mt_lep_met, axis=1) ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort( jet.pt_nom, ascending=False )] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta) < 2.4)] btag = getBTagsDeepFlavB( jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) fwd_cleaned = fwd[~match( fwd, getFwdJet(jet[:, 0:5]), deltaRCut=0.1 )] # the leading forward jets that are not in the 5 leading jets overall tau = getTaus(ev) track = getIsoTracks(ev) ## forward jets j_fwd = fwd[ak.singletons(ak.argmax( fwd.p, axis=1))] # highest momentum spectator high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2] bl = cross(lepton, high_score_btag) bl_dR = delta_r(bl['0'], bl['1']) min_bl_dR = ak.min(bl_dR, axis=1) jf = cross(j_fwd, jet) mjf = (jf['0'] + jf['1']).mass j_fwd2 = jf[ak.singletons( ak.argmax(mjf, axis=1) )]['1'] # this is the jet that forms the largest invariant mass with j_fwd delta_eta = ak.fill_none( ak.pad_none(abs(j_fwd2.eta - j_fwd.eta), 1, clip=True), 0) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt, axis=1) ## event selectors filters = getFilters(ev, year=self.year, dataset=dataset) dilep = ((ak.num(tightelectron) + ak.num(tightmuon)) == 2) lep0pt = ((ak.num(electron[(electron.pt > 25)]) + ak.num(muon[(muon.pt > 25)])) > 0) lep1pt = ((ak.num(electron[(electron.pt > 20)]) + ak.num(muon[(muon.pt > 20)])) > 1) lepveto = ((ak.num(electron) + ak.num(muon)) == 2) selection = PackedSelection() selection.add('lepveto', lepveto) selection.add('dilep', dilep) selection.add('filter', (filters)) selection.add('p_T(lep0)>25', lep0pt) selection.add('p_T(lep1)>20', lep1pt) selection.add('SS', (SSlepton | SSelectron | SSmuon)) selection.add('N_jet>3', (ak.num(jet) >= 4)) selection.add('N_central>2', (ak.num(central) >= 3)) selection.add('N_btag>0', (ak.num(btag) >= 1)) selection.add('N_fwd>0', (ak.num(fwd) >= 1)) #ss_reqs = ['lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS'] ss_reqs = [ 'lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS' ] #bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0', 'N_fwd>0'] bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0'] ss_reqs_d = {sel: True for sel in ss_reqs} ss_selection = selection.require(**ss_reqs_d) bl_reqs_d = {sel: True for sel in bl_reqs} BL = selection.require(**bl_reqs_d) weight = Weights(len(ev)) if not dataset == 'MuonEG': # lumi weight weight.add("weight", ev.weight) # PU weight - not in the babies... weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) #cutflow = Cutflow(output, ev, weight=weight) #cutflow_reqs_d = {} #for req in bl_reqs: # cutflow_reqs_d.update({req: True}) # cutflow.addRow( req, selection.require(**cutflow_reqs_d) ) labels = { 'topW_v3': 0, 'TTW': 1, 'TTZ': 2, 'TTH': 3, 'ttbar': 4, 'ttbar1l_MG': 4, 'DY': 6, 'topW_EFT_cp8': 100 } if dataset in labels: label_mult = labels[dataset] else: label_mult = 5 label = np.ones(len(ev[BL])) * label_mult n_nonprompt = (getNonPromptFromFlavour(tightelectron) + getNonPromptFromFlavour(tightmuon))[BL] n_chargeflip = (getChargeFlips(tightelectron, ev.GenPart) + getChargeFlips(tightmuon, ev.GenPart))[BL] n_genlep = ak.num(ev.GenL, axis=1)[BL] label_cat = ( n_nonprompt > 0 ) * 100 + (n_chargeflip > 0) * 1000 + (n_genlep > 2) * 10 + np.ones( len(ev[BL]) ) # >1000 for charge flip, >100 for non prompt, >10 for more than 2 gen lep, 1 for prompt if dataset == 'topW_v3': label_cat = np.ones(len(ev[BL])) * 0 else: label_cat = 4 * (label_cat >= 1000) + 3 * ( (label_cat >= 100) & (label_cat < 1000)) + 2 * ( (label_cat >= 10) & (label_cat < 100)) + 1 * ( label_cat < 10 ) # this makes charge flip 4, nonprompt 3... label_cat = np.array(label_cat) output["n_lep"] += processor.column_accumulator( ak.to_numpy((ak.num(electron) + ak.num(muon))[BL])) output["n_lep_tight"] += processor.column_accumulator( ak.to_numpy((ak.num(tightelectron) + ak.num(tightmuon))[BL])) o_leading_lepton = get_four_vec(leading_lepton[BL]) output["lead_lep_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.pt, axis=1))) output["lead_lep_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.eta, axis=1))) output["lead_lep_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.phi, axis=1))) output["lead_lep_charge"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.charge, axis=1))) output["lead_lep_energy"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.energy, axis=1))) output["lead_lep_px"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.px, axis=1))) output["lead_lep_py"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.py, axis=1))) output["lead_lep_pz"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_leading_lepton.pz, axis=1))) o_trailing_lepton = get_four_vec(trailing_lepton[BL]) output["sublead_lep_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.pt, axis=1))) output["sublead_lep_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.eta, axis=1))) output["sublead_lep_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.phi, axis=1))) output["sublead_lep_charge"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.charge, axis=1))) output["sublead_lep_energy"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.energy, axis=1))) output["sublead_lep_px"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.px, axis=1))) output["sublead_lep_py"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.py, axis=1))) output["sublead_lep_pz"] += processor.column_accumulator( ak.to_numpy(ak.flatten(o_trailing_lepton.pz, axis=1))) output["lead_jet_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 0:1][BL].pt, axis=1))) output["lead_jet_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 0:1][BL].eta, axis=1))) output["lead_jet_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 0:1][BL].phi, axis=1))) output["sublead_jet_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 1:2][BL].pt, axis=1))) output["sublead_jet_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 1:2][BL].eta, axis=1))) output["sublead_jet_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(jet[:, 1:2][BL].phi, axis=1))) for i in range(5): output["j%s_pt" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].pt))) output["j%s_eta" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].eta))) output["j%s_phi" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].phi))) output["j%s_energy" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].energy))) output["j%s_px" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].px))) output["j%s_py" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].py))) output["j%s_pz" % i] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(jet[:, i:i + 1][BL].pz))) output["j5_pt"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].pt))) output["j5_eta"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].eta))) output["j5_phi"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].phi))) output["j5_energy"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].energy))) output["j5_px"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].px))) output["j5_py"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].py))) output["j5_pz"] += processor.column_accumulator( ak.to_numpy(pad_and_flatten(fwd_cleaned[:, 0:1][BL].pz))) output["lead_btag_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].pt, axis=1))) output["lead_btag_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].eta, axis=1))) output["lead_btag_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].phi, axis=1))) output["lead_btag_energy"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].energy, axis=1))) output["lead_btag_px"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].px, axis=1))) output["lead_btag_py"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].py, axis=1))) output["lead_btag_pz"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].pz, axis=1))) output["sublead_btag_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].pt, axis=1))) output["sublead_btag_eta"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].eta, axis=1))) output["sublead_btag_phi"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].phi, axis=1))) output["sublead_btag_energy"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].energy, axis=1))) output["sublead_btag_px"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].px, axis=1))) output["sublead_btag_py"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].py, axis=1))) output["sublead_btag_pz"] += processor.column_accumulator( ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].pz, axis=1))) output["fwd_jet_p"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none(ak.pad_none(j_fwd[BL].p, 1, clip=True), 0), axis=1))) output["fwd_jet_pt"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].pt, 1, clip=True), 0), axis=1))) output["fwd_jet_eta"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].eta, 1, clip=True), 0), axis=1))) output["fwd_jet_phi"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].phi, 1, clip=True), 0), axis=1))) output["fwd_jet_energy"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].energy, 1, clip=True), 0), axis=1))) output["fwd_jet_px"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].px, 1, clip=True), 0), axis=1))) output["fwd_jet_py"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].py, 1, clip=True), 0), axis=1))) output["fwd_jet_pz"] += processor.column_accumulator( ak.to_numpy( ak.flatten(ak.fill_none( ak.pad_none(j_fwd[BL].pz, 1, clip=True), 0), axis=1))) output["mjj_max"] += processor.column_accumulator( ak.to_numpy(ak.fill_none(ak.max(mjf[BL], axis=1), 0))) output["delta_eta_jj"] += processor.column_accumulator( ak.to_numpy(ak.flatten(delta_eta[BL], axis=1))) output["met"] += processor.column_accumulator(ak.to_numpy(met_pt[BL])) output["ht"] += processor.column_accumulator(ak.to_numpy(ht[BL])) output["st"] += processor.column_accumulator(ak.to_numpy(st[BL])) output["n_jet"] += processor.column_accumulator( ak.to_numpy(ak.num(jet[BL]))) output["n_btag"] += processor.column_accumulator( ak.to_numpy(ak.num(btag[BL]))) output["n_fwd"] += processor.column_accumulator( ak.to_numpy(ak.num(fwd[BL]))) output["n_central"] += processor.column_accumulator( ak.to_numpy(ak.num(central[BL]))) output["n_tau"] += processor.column_accumulator( ak.to_numpy(ak.num(tau[BL]))) output["n_track"] += processor.column_accumulator( ak.to_numpy(ak.num(track[BL]))) output["dilepton_pt"] += processor.column_accumulator( ak.to_numpy(ak.flatten(dilepton_pt[BL], axis=1))) output["dilepton_mass"] += processor.column_accumulator( ak.to_numpy(ak.flatten(dilepton_mass[BL], axis=1))) output["min_bl_dR"] += processor.column_accumulator( ak.to_numpy(min_bl_dR[BL])) output["min_mt_lep_met"] += processor.column_accumulator( ak.to_numpy(min_mt_lep_met[BL])) output["label"] += processor.column_accumulator(label) output["label_cat"] += processor.column_accumulator(label_cat) output["weight"] += processor.column_accumulator(weight.weight()[BL]) output["presel"]["all"] += len(ev[ss_selection]) output["sel"]["all"] += len(ev[BL]) return output
def process(self, events): output = self.accumulator.identity() # use a very loose preselection to filter the events presel = ak.num(events.Jet) > 2 ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) ## Muons muon = Collections(ev, "Muon", "tightSSTTH").get() vetomuon = Collections(ev, "Muon", "vetoTTH").get() dimuon = choose(muon, 2) SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1) OSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) < 0, axis=1) leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1)) leading_muon = muon[leading_muon_idx] ## Electrons electron = Collections(ev, "Electron", "tightSSTTH").get() vetoelectron = Collections(ev, "Electron", "vetoTTH").get() dielectron = choose(electron, 2) SSelectron = ak.any( (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1) OSelectron = ak.any( (dielectron['0'].charge * dielectron['1'].charge) < 0, axis=1) leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[leading_electron_idx] ## Merge electrons and muons - this should work better now in ak1 lepton = ak.concatenate([muon, electron], axis=1) dilepton = cross(muon, electron) SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0, axis=1) OSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) < 0, axis=1) leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1)) leading_lepton = lepton[leading_lepton_idx] trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1)) trailing_lepton = lepton[trailing_lepton_idx] dilepton_mass = (leading_lepton + trailing_lepton).mass dilepton_pt = (leading_lepton + trailing_lepton).pt dilepton_dR = delta_r(leading_lepton, trailing_lepton) ## Jets jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom') jet = jet[ak.argsort( jet.pt_nom, ascending=False )] # need to sort wrt smeared and recorrected jet pt jet = jet[~match(jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta) < 2.4)] btag = getBTagsDeepFlavB( jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) ## forward jets high_p_fwd = fwd[ak.singletons(ak.argmax( fwd.p, axis=1))] # highest momentum spectator high_pt_fwd = fwd[ak.singletons(ak.argmax( fwd.pt_nom, axis=1))] # highest transverse momentum spectator high_eta_fwd = fwd[ak.singletons(ak.argmax(abs( fwd.eta), axis=1))] # most forward spectator ## Get the two leading b-jets in terms of btag score high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2] jf = cross(high_p_fwd, jet) mjf = (jf['0'] + jf['1']).mass deltaEta = abs(high_p_fwd.eta - jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'].eta) deltaEtaMax = ak.max(deltaEta, axis=1) mjf_max = ak.max(mjf, axis=1) jj = choose(jet, 2) mjj_max = ak.max((jj['0'] + jj['1']).mass, axis=1) ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi ## other variables ht = ak.sum(jet.pt, axis=1) st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt, axis=1) ht_central = ak.sum(central.pt, axis=1) tau = getTaus(ev) track = getIsoTracks(ev) bl = cross(lepton, high_score_btag) bl_dR = delta_r(bl['0'], bl['1']) min_bl_dR = ak.min(bl_dR, axis=1) mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi) min_mt_lep_met = ak.min(mt_lep_met, axis=1) # define the weight weight = Weights(len(ev)) if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): # lumi weight weight.add("weight", ev.weight * cfg['lumi'][self.year]) # PU weight - not in the babies... weight.add("PU", ev.puWeight, weightUp=ev.puWeightUp, weightDown=ev.puWeightDown, shift=False) # b-tag SFs weight.add("btag", self.btagSF.Method1a(btag, light)) # lepton SFs weight.add("lepton", self.leptonSF.get(electron, muon)) #weight.add("trigger", self.triggerSF.get(electron, muon)) cutflow = Cutflow(output, ev, weight=weight) sel = Selection( dataset=dataset, events=ev, year=self.year, ele=electron, ele_veto=vetoelectron, mu=muon, mu_veto=vetomuon, jet_all=jet, jet_central=central, jet_btag=btag, jet_fwd=fwd, met=ev.MET, ) BL = sel.dilep_baseline(cutflow=cutflow, SS=False) # first, make a few super inclusive plots output['PV_npvs'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvs, weight=weight.weight()[BL]) output['PV_npvsGood'].fill(dataset=dataset, multiplicity=ev.PV[BL].npvsGood, weight=weight.weight()[BL]) output['N_jet'].fill(dataset=dataset, multiplicity=ak.num(jet)[BL], weight=weight.weight()[BL]) output['N_tau'].fill(dataset=dataset, multiplicity=ak.num(tau)[BL], weight=weight.weight()[BL]) output['N_track'].fill(dataset=dataset, multiplicity=ak.num(track)[BL], weight=weight.weight()[BL]) BL_minusNb = sel.dilep_baseline(SS=False, omit=['N_btag>0']) output['N_b'].fill(dataset=dataset, multiplicity=ak.num(btag)[BL_minusNb], weight=weight.weight()[BL_minusNb]) output['N_central'].fill(dataset=dataset, multiplicity=ak.num(central)[BL], weight=weight.weight()[BL]) output['N_ele'].fill(dataset=dataset, multiplicity=ak.num(electron)[BL], weight=weight.weight()[BL]) output['N_mu'].fill(dataset=dataset, multiplicity=ak.num(electron)[BL], weight=weight.weight()[BL]) BL_minusFwd = sel.dilep_baseline(SS=False, omit=['N_fwd>0']) output['N_fwd'].fill(dataset=dataset, multiplicity=ak.num(fwd)[BL_minusFwd], weight=weight.weight()[BL_minusFwd]) output['dilep_pt'].fill(dataset=dataset, pt=ak.flatten(dilepton_pt[BL]), weight=weight.weight()[BL]) output['dilep_mass'].fill(dataset=dataset, mass=ak.flatten(dilepton_mass[BL]), weight=weight.weight()[BL]) output['mjf_max'].fill(dataset=dataset, mass=mjf_max[BL], weight=weight.weight()[BL]) output['deltaEta'].fill(dataset=dataset, eta=ak.flatten(deltaEta[BL]), weight=weight.weight()[BL]) output['min_bl_dR'].fill(dataset=dataset, eta=min_bl_dR[BL], weight=weight.weight()[BL]) output['min_mt_lep_met'].fill(dataset=dataset, pt=min_mt_lep_met[BL], weight=weight.weight()[BL]) output['leading_jet_pt'].fill(dataset=dataset, pt=ak.flatten(jet[:, 0:1][BL].pt), weight=weight.weight()[BL]) output['subleading_jet_pt'].fill(dataset=dataset, pt=ak.flatten(jet[:, 1:2][BL].pt), weight=weight.weight()[BL]) output['leading_jet_eta'].fill(dataset=dataset, eta=ak.flatten(jet[:, 0:1][BL].eta), weight=weight.weight()[BL]) output['subleading_jet_eta'].fill(dataset=dataset, eta=ak.flatten(jet[:, 1:2][BL].eta), weight=weight.weight()[BL]) output['leading_btag_pt'].fill(dataset=dataset, pt=ak.flatten( high_score_btag[:, 0:1][BL].pt), weight=weight.weight()[BL]) output['subleading_btag_pt'].fill(dataset=dataset, pt=ak.flatten( high_score_btag[:, 1:2][BL].pt), weight=weight.weight()[BL]) output['leading_btag_eta'].fill(dataset=dataset, eta=ak.flatten( high_score_btag[:, 0:1][BL].eta), weight=weight.weight()[BL]) output['subleading_btag_eta'].fill( dataset=dataset, eta=ak.flatten(high_score_btag[:, 1:2][BL].eta), weight=weight.weight()[BL]) BL_minusMET = sel.dilep_baseline(SS=False, omit=['MET>50']) output['MET'].fill(dataset=dataset, pt=ev.MET[BL_minusMET].pt, phi=ev.MET[BL_minusMET].phi, weight=weight.weight()[BL_minusMET]) #output['electron'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(electron[BL].pt)), # eta = ak.to_numpy(ak.flatten(electron[BL].eta)), # phi = ak.to_numpy(ak.flatten(electron[BL].phi)), # weight = weight.weight()[BL] #) # #output['muon'].fill( # dataset = dataset, # pt = ak.to_numpy(ak.flatten(muon[BL].pt)), # eta = ak.to_numpy(ak.flatten(muon[BL].eta)), # phi = ak.to_numpy(ak.flatten(muon[BL].phi)), # weight = weight.weight()[BL] #) output['lead_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(leading_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(leading_lepton[BL].phi)), weight=weight.weight()[BL]) output['trail_lep'].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)), eta=ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)), phi=ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)), weight=weight.weight()[BL]) output['fwd_jet'].fill(dataset=dataset, pt=ak.flatten(high_p_fwd[BL].pt_nom), eta=ak.flatten(high_p_fwd[BL].eta), phi=ak.flatten(high_p_fwd[BL].phi), weight=weight.weight()[BL]) output['b1'].fill(dataset=dataset, pt=ak.flatten(high_score_btag[:, 0:1][BL].pt_nom), eta=ak.flatten(high_score_btag[:, 0:1][BL].eta), phi=ak.flatten(high_score_btag[:, 0:1][BL].phi), weight=weight.weight()[BL]) output['b2'].fill(dataset=dataset, pt=ak.flatten(high_score_btag[:, 1:2][BL].pt_nom), eta=ak.flatten(high_score_btag[:, 1:2][BL].eta), phi=ak.flatten(high_score_btag[:, 1:2][BL].phi), weight=weight.weight()[BL]) output['j1'].fill(dataset=dataset, pt=ak.flatten(jet.pt_nom[:, 0:1][BL]), eta=ak.flatten(jet.eta[:, 0:1][BL]), phi=ak.flatten(jet.phi[:, 0:1][BL]), weight=weight.weight()[BL]) output['j2'].fill(dataset=dataset, pt=ak.flatten(jet[:, 1:2][BL].pt_nom), eta=ak.flatten(jet[:, 1:2][BL].eta), phi=ak.flatten(jet[:, 1:2][BL].phi), weight=weight.weight()[BL]) output['j3'].fill(dataset=dataset, pt=ak.flatten(jet[:, 2:3][BL].pt_nom), eta=ak.flatten(jet[:, 2:3][BL].eta), phi=ak.flatten(jet[:, 2:3][BL].phi), weight=weight.weight()[BL]) if re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): #rle = ak.to_numpy(ak.zip([ev.run, ev.luminosityBlock, ev.event])) run_ = ak.to_numpy(ev.run) lumi_ = ak.to_numpy(ev.luminosityBlock) event_ = ak.to_numpy(ev.event) output['%s_run' % dataset] += processor.column_accumulator( run_[BL]) output['%s_lumi' % dataset] += processor.column_accumulator( lumi_[BL]) output['%s_event' % dataset] += processor.column_accumulator( event_[BL]) # Now, take care of systematic unceratinties if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'), dataset): alljets = getJets(ev, minPt=0, maxEta=4.7) alljets = alljets[(alljets.jetId > 1)] for var in self.variations: # get the collections that change with the variations jet = getPtEtaPhi(alljets, pt_var=var) jet = jet[(jet.pt > 25)] jet = jet[~match( jet, muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons central = jet[(abs(jet.eta) < 2.4)] btag = getBTagsDeepFlavB( jet, year=self.year) # should study working point for DeepJet light = getBTagsDeepFlavB(jet, year=self.year, invert=True) fwd = getFwdJet(light) fwd_noPU = getFwdJet(light, puId=False) ## forward jets high_p_fwd = fwd[ak.singletons(ak.argmax( fwd.p, axis=1))] # highest momentum spectator high_pt_fwd = fwd[ak.singletons(ak.argmax( fwd.pt, axis=1))] # highest transverse momentum spectator high_eta_fwd = fwd[ak.singletons( ak.argmax(abs(fwd.eta), axis=1))] # most forward spectator ## Get the two leading b-jets in terms of btag score high_score_btag = central[ak.argsort( central.btagDeepFlavB)][:, :2] met = ev.MET #met['pt'] = getattr(met, var) sel = Selection( dataset=dataset, events=ev, year=self.year, ele=electron, ele_veto=vetoelectron, mu=muon, mu_veto=vetomuon, jet_all=jet, jet_central=central, jet_btag=btag, jet_fwd=fwd, met=met, ) BL = sel.dilep_baseline(SS=False) # get the modified selection -> more difficult #selection.add('N_jet>2_'+var, (ak.num(jet.pt)>=3)) # stupid bug here... #selection.add('N_btag=2_'+var, (ak.num(btag)==2) ) #selection.add('N_central>1_'+var, (ak.num(central)>=2) ) #selection.add('N_fwd>0_'+var, (ak.num(fwd)>=1) ) #selection.add('MET>30_'+var, (getattr(ev.MET, var)>30) ) ### Don't change the selection for now... #bl_reqs = os_reqs + ['N_jet>2_'+var, 'MET>30_'+var, 'N_btag=2_'+var, 'N_central>1_'+var, 'N_fwd>0_'+var] #bl_reqs_d = { sel: True for sel in bl_reqs } #BL = selection.require(**bl_reqs_d) # the OS selection remains unchanged output['N_jet_' + var].fill(dataset=dataset, multiplicity=ak.num(jet)[BL], weight=weight.weight()[BL]) BL_minusFwd = sel.dilep_baseline(SS=False, omit=['N_fwd>0']) output['N_fwd_' + var].fill( dataset=dataset, multiplicity=ak.num(fwd)[BL_minusFwd], weight=weight.weight()[BL_minusFwd]) BL_minusNb = sel.dilep_baseline(SS=False, omit=['N_btag>0']) output['N_b_' + var].fill( dataset=dataset, multiplicity=ak.num(btag)[BL_minusNb], weight=weight.weight()[BL_minusNb]) output['N_central_' + var].fill( dataset=dataset, multiplicity=ak.num(central)[BL], weight=weight.weight()[BL]) # We don't need to redo all plots with variations. E.g., just add uncertainties to the jet plots. output['j1_' + var].fill(dataset=dataset, pt=ak.flatten(jet.pt[:, 0:1][BL]), eta=ak.flatten(jet.eta[:, 0:1][BL]), phi=ak.flatten(jet.phi[:, 0:1][BL]), weight=weight.weight()[BL]) output['b1_' + var].fill( dataset=dataset, pt=ak.flatten(high_score_btag[:, 0:1].pt[:, 0:1][BL]), eta=ak.flatten(high_score_btag[:, 0:1].eta[:, 0:1][BL]), phi=ak.flatten(high_score_btag[:, 0:1].phi[:, 0:1][BL]), weight=weight.weight()[BL]) output['fwd_jet_' + var].fill( dataset=dataset, pt=ak.flatten(high_p_fwd[BL].pt), #p = ak.flatten(high_p_fwd[BL].p), eta=ak.flatten(high_p_fwd[BL].eta), phi=ak.flatten(high_p_fwd[BL].phi), weight=weight.weight()[BL]) BL_minusMET = sel.dilep_baseline(SS=False, omit=['MET>50']) output['MET_' + var].fill( dataset=dataset, #pt = getattr(ev.MET, var)[BL_minusMET], pt=ev.MET[BL_minusMET].pt, phi=ev.MET[BL_minusMET].phi, weight=weight.weight()[BL_minusMET]) return output
def process(self, events): dataset = events.metadata['dataset'] isRealData = not hasattr(events, "genWeight") selection = PackedSelection() weights = Weights(len(events)) output = self.accumulator.identity() if not isRealData: output['sumw'][dataset] += ak.sum(events.genWeight) if isRealData: trigger = np.zeros(len(events), dtype='bool') for t in self._triggers[self._year]: trigger = trigger | events.HLT[t] else: trigger = np.ones(len(events), dtype='bool') selection.add('trigger', trigger) if isRealData: trigger = np.zeros(len(events), dtype='bool') for t in self._muontriggers[self._year]: trigger = trigger | events.HLT[t] else: trigger = np.ones(len(events), dtype='bool') selection.add('muontrigger', trigger) fatjets = events.FatJet fatjets['msdcorr'] = corrected_msoftdrop(fatjets) fatjets['qcdrho'] = 2 * np.log(fatjets.msdcorr / fatjets.pt) fatjets['n2ddt'] = fatjets.n2b1 - n2ddt_shift(fatjets, year=self._year) fatjets['msdcorr_full'] = fatjets['msdcorr'] * self._msdSF[self._year] candidatejet = fatjets[ # https://github.com/DAZSLE/BaconAnalyzer/blob/master/Analyzer/src/VJetLoader.cc#L269 (fatjets.pt > 200) & (abs(fatjets.eta) < 2.5) & fatjets.isTight # this is loose in sampleContainer ] if self._jet_arbitration == 'pt': candidatejet = ak.firsts(candidatejet) elif self._jet_arbitration == 'mass': candidatejet = candidatejet[ak.argmax(candidatejet.msdcorr)] elif self._jet_arbitration == 'n2': candidatejet = candidatejet[ak.argmin(candidatejet.n2ddt)] elif self._jet_arbitration == 'ddb': candidatejet = candidatejet[ak.argmax(candidatejet.btagDDBvL)] else: raise RuntimeError("Unknown candidate jet arbitration") selection.add('minjetkin', (candidatejet.pt >= 450) & (candidatejet.msdcorr >= 40.) & (abs(candidatejet.eta) < 2.5)) selection.add('jetacceptance', (candidatejet.msdcorr >= 47.) & (candidatejet.pt < 1200) & (candidatejet.msdcorr < 201.)) selection.add('jetid', candidatejet.isTight) selection.add('n2ddt', (candidatejet.n2ddt < 0.)) selection.add('ddbpass', (candidatejet.btagDDBvL >= 0.89)) jets = events.Jet[(events.Jet.pt > 30.) & (abs(events.Jet.eta) < 2.5) & events.Jet.isTight] # only consider first 4 jets to be consistent with old framework jets = jets[:, :4] dphi = abs(jets.delta_phi(candidatejet)) selection.add( 'antiak4btagMediumOppHem', ak.max( jets[dphi > np.pi / 2].btagDeepB, axis=1, mask_identity=False) < BTagEfficiency.btagWPs[self._year]['medium']) ak4_away = jets[dphi > 0.8] selection.add( 'ak4btagMedium08', ak.max(ak4_away.btagDeepB, axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._year]['medium']) selection.add('met', events.MET.pt < 140.) goodmuon = ((events.Muon.pt > 10) & (abs(events.Muon.eta) < 2.4) & (events.Muon.pfRelIso04_all < 0.25) & events.Muon.looseId) nmuons = ak.sum(goodmuon, axis=1) leadingmuon = ak.firsts(events.Muon[goodmuon]) nelectrons = ak.sum( (events.Electron.pt > 10) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.LOOSE), axis=1, ) ntaus = ak.sum( (events.Tau.pt > 20) & events.Tau.idDecayMode, # bacon iso looser than Nano selection axis=1, ) selection.add('noleptons', (nmuons == 0) & (nelectrons == 0) & (ntaus == 0)) selection.add('onemuon', (nmuons == 1) & (nelectrons == 0) & (ntaus == 0)) selection.add('muonkin', (leadingmuon.pt > 55.) & (abs(leadingmuon.eta) < 2.1)) selection.add('muonDphiAK8', abs(leadingmuon.delta_phi(candidatejet)) > 2 * np.pi / 3) if isRealData: genflavor = 0 else: weights.add('genweight', events.genWeight) add_pileup_weight(weights, events.Pileup.nPU, self._year, dataset) bosons = getBosons(events.GenPart) matchedBoson = candidatejet.nearest(bosons, axis=None, threshold=0.8) genflavor = bosonFlavor(matchedBoson) genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0) add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset) add_jetTriggerWeight(weights, candidatejet.msdcorr, candidatejet.pt, self._year) output['btagWeight'].fill(dataset=dataset, val=self._btagSF.addBtagWeight( weights, ak4_away)) logger.debug("Weight statistics: %r" % weights.weightStatistics) msd_matched = candidatejet.msdcorr * self._msdSF[self._year] * ( genflavor > 0) + candidatejet.msdcorr * (genflavor == 0) regions = { 'signal': [ 'trigger', 'minjetkin', 'jetacceptance', 'jetid', 'n2ddt', 'antiak4btagMediumOppHem', 'met', 'noleptons' ], 'muoncontrol': [ 'muontrigger', 'minjetkin', 'jetacceptance', 'jetid', 'n2ddt', 'ak4btagMedium08', 'onemuon', 'muonkin', 'muonDphiAK8' ], 'noselection': [], } for region, cuts in regions.items(): allcuts = set() output['cutflow'].fill(dataset=dataset, region=region, genflavor=genflavor, cut=0, weight=weights.weight()) for i, cut in enumerate(cuts + ['ddbpass']): allcuts.add(cut) cut = selection.all(*allcuts) output['cutflow'].fill(dataset=dataset, region=region, genflavor=genflavor[cut], cut=i + 1, weight=weights.weight()[cut]) systematics = [ None, 'jet_triggerUp', 'jet_triggerDown', 'btagWeightUp', 'btagWeightDown', 'btagEffStatUp', 'btagEffStatDown', ] def normalize(val, cut): return ak.to_numpy(ak.fill_none(val[cut], np.nan)) def fill(region, systematic, wmod=None): selections = regions[region] cut = selection.all(*selections) sname = 'nominal' if systematic is None else systematic if wmod is None: weight = weights.weight(modifier=systematic)[cut] else: weight = weights.weight()[cut] * wmod[cut] output['templates'].fill( dataset=dataset, region=region, systematic=sname, genflavor=genflavor[cut], pt=normalize(candidatejet.pt, cut), msd=normalize(msd_matched, cut), ddb=normalize(candidatejet.btagDDBvL, cut), weight=weight, ) if wmod is not None: output['genresponse_noweight'].fill( dataset=dataset, region=region, systematic=sname, pt=normalize(candidatejet.pt, cut), genpt=normalize(genBosonPt, cut), weight=events.genWeight[cut] * wmod[cut], ) output['genresponse'].fill( dataset=dataset, region=region, systematic=sname, pt=normalize(candidatejet.pt, cut), genpt=normalize(genBosonPt, cut), weight=weight, ) for region in regions: cut = selection.all(*(set(regions[region]) - {'n2ddt'})) output['nminus1_n2ddt'].fill( dataset=dataset, region=region, n2ddt=normalize(candidatejet.n2ddt, cut), weight=weights.weight()[cut], ) for systematic in systematics: fill(region, systematic) if 'GluGluHToBB' in dataset: for i in range(9): fill(region, 'LHEScale_%d' % i, events.LHEScaleWeight[:, i]) for c in events.LHEWeight.columns[1:]: fill(region, 'LHEWeight_%s' % c, events.LHEWeight[c]) output["weightStats"] = weights.weightStatistics return output
def process(self, events): output = self.accumulator.identity() # we can use a very loose preselection to filter the events. nothing is done with this presel, though presel = ak.num(events.Jet) > 0 if self.year == 2016: lumimask = LumiMask( '../data/lumi/Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON.txt' ) if self.year == 2017: lumimask = LumiMask( '../data/lumi/Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt' ) if self.year == 2018: lumimask = LumiMask( '../data/lumi/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt' ) ev = events[presel] dataset = ev.metadata['dataset'] # load the config - probably not needed anymore cfg = loadConfig() output['totalEvents']['all'] += len(events) output['skimmedEvents']['all'] += len(ev) if self.year == 2018: triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL elif self.year == 2017: triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL elif self.year == 2016: triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ ## Electrons electron = Collections(ev, "Electron", "tightFCNC", 0, self.year).get() electron = electron[(electron.pt > 25) & (np.abs(electron.eta) < 2.4)] loose_electron = Collections(ev, "Electron", "looseFCNC", 0, self.year).get() loose_electron = loose_electron[(loose_electron.pt > 25) & (np.abs(loose_electron.eta) < 2.4)] SSelectron = (ak.sum(electron.charge, axis=1) != 0) & (ak.num(electron) == 2) OSelectron = (ak.sum(electron.charge, axis=1) == 0) & (ak.num(electron) == 2) dielectron = choose(electron, 2) dielectron_mass = (dielectron['0'] + dielectron['1']).mass dielectron_pt = (dielectron['0'] + dielectron['1']).pt leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1)) leading_electron = electron[(leading_electron_idx)] leading_electron = leading_electron[(leading_electron.pt > 30)] trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1)) trailing_electron = electron[trailing_electron_idx] ##Muons loose_muon = Collections(ev, "Muon", "looseFCNC", 0, self.year).get() loose_muon = loose_muon[(loose_muon.pt > 20) & (np.abs(loose_muon.eta) < 2.4)] #jets jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt') jet = jet[~match(jet, loose_muon, deltaRCut=0.4)] # remove jets that overlap with muons jet = jet[~match( jet, electron, deltaRCut=0.4)] # remove jets that overlap with electrons ## MET -> can switch to puppi MET met_pt = ev.MET.pt met_phi = ev.MET.phi #weights weight = Weights(len(ev)) weight2 = Weights(len(ev)) weight2.add("charge flip", self.charge_flip_ratio.flip_weight(electron)) #selections filters = getFilters(ev, year=self.year, dataset=dataset, UL=False) mask = lumimask(ev.run, ev.luminosityBlock) ss = (SSelectron) os = (OSelectron) mass = (ak.min(np.abs(dielectron_mass - 91.2), axis=1) < 15) lead_electron = (ak.min(leading_electron.pt, axis=1) > 30) jet1 = (ak.num(jet) >= 1) jet2 = (ak.num(jet) >= 2) num_loose = ((ak.num(loose_electron) == 2) & (ak.num(loose_muon) == 0)) selection = PackedSelection() selection.add('filter', (filters)) selection.add('mask', (mask)) selection.add('ss', ss) selection.add('os', os) selection.add('mass', mass) selection.add('leading', lead_electron) selection.add('triggers', triggers) selection.add('one jet', jet1) selection.add('two jets', jet2) selection.add('num_loose', num_loose) bl_reqs = ['filter'] + ['triggers'] + ['mask'] bl_reqs_d = {sel: True for sel in bl_reqs} baseline = selection.require(**bl_reqs_d) s_reqs = bl_reqs + ['ss'] + ['mass'] + ['num_loose'] + ['leading'] s_reqs_d = {sel: True for sel in s_reqs} ss_sel = selection.require(**s_reqs_d) o_reqs = bl_reqs + ['os'] + ['mass'] + ['num_loose'] + ['leading'] o_reqs_d = {sel: True for sel in o_reqs} os_sel = selection.require(**o_reqs_d) j1s_reqs = s_reqs + ['one jet'] j1s_reqs_d = {sel: True for sel in j1s_reqs} j1ss_sel = selection.require(**j1s_reqs_d) j1o_reqs = o_reqs + ['one jet'] j1o_reqs_d = {sel: True for sel in j1o_reqs} j1os_sel = selection.require(**j1o_reqs_d) j2s_reqs = s_reqs + ['two jets'] j2s_reqs_d = {sel: True for sel in j2s_reqs} j2ss_sel = selection.require(**j2s_reqs_d) j2o_reqs = o_reqs + ['two jets'] j2o_reqs_d = {sel: True for sel in j2o_reqs} j2os_sel = selection.require(**j2o_reqs_d) #outputs output["electron_data1"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[os_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[os_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[os_sel].phi)), weight=weight2.weight()[os_sel]) output["electron_data2"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[os_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[os_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[os_sel].phi)), weight=weight2.weight()[os_sel]) output["electron_data3"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[j1os_sel].phi)), weight=weight2.weight()[j1os_sel]) output["electron_data4"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[j1os_sel].phi)), weight=weight2.weight()[j1os_sel]) output["electron_data5"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[j2os_sel].phi)), weight=weight2.weight()[j2os_sel]) output["electron_data6"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[j2os_sel].phi)), weight=weight2.weight()[j2os_sel]) output["electron_data7"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[ss_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[ss_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[ss_sel].phi)), weight=weight.weight()[ss_sel]) output["electron_data8"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[ss_sel].phi)), weight=weight.weight()[ss_sel]) output["electron_data9"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[j1ss_sel].phi)), weight=weight.weight()[j1ss_sel]) output["electron_data10"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[j1ss_sel].phi)), weight=weight.weight()[j1ss_sel]) output["electron_data11"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].pt)), eta=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].eta)), phi=ak.to_numpy(ak.flatten(leading_electron[j2ss_sel].phi)), weight=weight.weight()[j2ss_sel]) output["electron_data12"].fill( dataset=dataset, pt=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].pt)), eta=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].eta)), phi=ak.to_numpy(ak.flatten(trailing_electron[j2ss_sel].phi)), weight=weight.weight()[j2ss_sel]) output["dilep_mass1"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[os_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[os_sel])), weight=weight2.weight()[os_sel]) output["dilep_mass2"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[j1os_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[j1os_sel])), weight=weight2.weight()[j1os_sel]) output["dilep_mass3"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[j2os_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[j2os_sel])), weight=weight2.weight()[j2os_sel]) output["dilep_mass4"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[ss_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[ss_sel])), weight=weight.weight()[ss_sel]) output["dilep_mass5"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[j1ss_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[j1ss_sel])), weight=weight.weight()[j1ss_sel]) output["dilep_mass6"].fill( dataset=dataset, mass=ak.to_numpy(ak.flatten(dielectron_mass[j2ss_sel])), pt=ak.to_numpy(ak.flatten(dielectron_pt[j2ss_sel])), weight=weight.weight()[j2ss_sel]) output["MET"].fill(dataset=dataset, pt=met_pt[os_sel], weight=weight2.weight()[os_sel]) output["MET2"].fill(dataset=dataset, pt=met_pt[j1os_sel], weight=weight2.weight()[j1os_sel]) output["MET3"].fill(dataset=dataset, pt=met_pt[j2os_sel], weight=weight2.weight()[j2os_sel]) output["MET4"].fill(dataset=dataset, pt=met_pt[ss_sel], weight=weight.weight()[ss_sel]) output["MET5"].fill(dataset=dataset, pt=met_pt[j1ss_sel], weight=weight.weight()[j1ss_sel]) output["MET6"].fill(dataset=dataset, pt=met_pt[j2ss_sel], weight=weight.weight()[j2ss_sel]) output["N_jet"].fill(dataset=dataset, multiplicity=ak.num(jet)[os_sel], weight=weight2.weight()[os_sel]) output["N_jet2"].fill(dataset=dataset, multiplicity=ak.num(jet)[j1os_sel], weight=weight2.weight()[j1os_sel]) output["N_jet3"].fill(dataset=dataset, multiplicity=ak.num(jet)[j2os_sel], weight=weight2.weight()[j2os_sel]) output["N_jet4"].fill(dataset=dataset, multiplicity=ak.num(jet)[ss_sel], weight=weight.weight()[ss_sel]) output["N_jet5"].fill(dataset=dataset, multiplicity=ak.num(jet)[j1ss_sel], weight=weight.weight()[j1ss_sel]) output["N_jet6"].fill(dataset=dataset, multiplicity=ak.num(jet)[j2ss_sel], weight=weight.weight()[j2ss_sel]) output["PV_npvsGood"].fill(dataset=dataset, multiplicity=ev.PV[os_sel].npvsGood, weight=weight2.weight()[os_sel]) output["PV_npvsGood2"].fill(dataset=dataset, multiplicity=ev.PV[j1os_sel].npvsGood, weight=weight2.weight()[j1os_sel]) output["PV_npvsGood3"].fill(dataset=dataset, multiplicity=ev.PV[j2os_sel].npvsGood, weight=weight2.weight()[j2os_sel]) output["PV_npvsGood4"].fill(dataset=dataset, multiplicity=ev.PV[ss_sel].npvsGood, weight=weight.weight()[ss_sel]) output["PV_npvsGood5"].fill(dataset=dataset, multiplicity=ev.PV[j1ss_sel].npvsGood, weight=weight.weight()[j1ss_sel]) output["PV_npvsGood6"].fill(dataset=dataset, multiplicity=ev.PV[j2ss_sel].npvsGood, weight=weight.weight()[j2ss_sel]) return output
def process(self, events): def normalize(val, cut): return ak.to_numpy(ak.fill_none( val[cut], np.nan)) #val[cut].pad(1, clip=True).fillna(0).flatten() def fill(region, cuts, systematic=None, wmod=None): print('filling %s' % region) selections = cuts cut = selection.all(*selections) if 'signal' in region: weight = weights_signal.weight()[cut] elif 'muonCR' in region: weight = weights_muonCR.weight()[cut] elif 'VtaggingCR' in region: weight = weights_VtaggingCR.weight()[cut] output['templates'].fill( dataset=dataset, region=region, pt=normalize(candidatejet.pt, cut), msd=normalize(candidatejet.msdcorr, cut), n2ddt=normalize(candidatejet.n2ddt, cut), #gruddt=normalize(candidatejet.gruddt, cut), in_v3_ddt=normalize(candidatejet.in_v3_ddt, cut), hadW=normalize(candidatejet.nmatcheddau, cut), weight=weight, ), output['event'].fill( dataset=dataset, region=region, MET=events.MET.pt[cut], #nJet=fatjets.counts[cut], nPFConstituents=normalize(candidatejet.nPFConstituents, cut), weight=weight, ), output['deepAK8'].fill( dataset=dataset, region=region, deepTagMDWqq=normalize(candidatejet.deepTagMDWqq, cut), deepTagMDZqq=normalize(candidatejet.deepTagMDZqq, cut), msd=normalize(candidatejet.msdcorr, cut), #genflavor=genflavor[cut], weight=weight, ), output['in_v3'].fill( dataset=dataset, region=region, #genflavor=genflavor[cut], in_v3=normalize(candidatejet.in_v3, cut), n2=normalize(candidatejet.n2b1, cut), gru=normalize(candidatejet.gru, cut), weight=weight, ), if 'muonCR' in dataset or 'VtaggingCR' in dataset: output['muon'].fill( dataset=dataset, region=region, mu_pt=normalize(candidatemuon.pt, cut), mu_eta=normalize(candidatemuon.eta, cut), mu_pfRelIso04_all=normalize(candidatemuon.pfRelIso04_all, cut), weight=weight, ), #common jet kinematics gru = events.GRU IN = events.IN fatjets = events.FatJet fatjets['msdcorr'] = corrected_msoftdrop(fatjets) fatjets['qcdrho'] = 2 * np.log(fatjets.msdcorr / fatjets.pt) fatjets['gruddt'] = gru.v25 - shift( fatjets, algo='gruddt', year='2017') fatjets['gru'] = gru.v25 fatjets['in_v3'] = IN.v3 fatjets['in_v3_ddt'] = IN.v3 - shift( fatjets, algo='inddt', year='2017') fatjets['in_v3_ddt_90pctl'] = IN.v3 - shift( fatjets, algo='inddt90pctl', year='2017') fatjets['n2ddt'] = fatjets.n2b1 - n2ddt_shift(fatjets, year='2017') fatjets['nmatcheddau'] = TTsemileptonicmatch(events) dataset = events.metadata['dataset'] print('process dataset', dataset) isRealData = not hasattr(events, 'genWeight') output = self.accumulator.identity() if (len(events) == 0): return output selection = PackedSelection('uint64') weights_signal = Weights(len(events)) weights_muonCR = Weights(len(events)) weights_VtaggingCR = Weights(len(events)) if not isRealData: output['sumw'][dataset] += ak.sum(events.genWeight) ####################### if 'signal' in self._region: if isRealData: trigger_fatjet = np.zeros(len(events), dtype='bool') for t in self._triggers[self._year]: try: trigger_fatjet = trigger_fatjet | events.HLT[t] except: print('trigger %s not available' % t) continue else: trigger_fatjet = np.ones(len(events), dtype='bool') fatjets["genMatchFull"] = VQQgenmatch(events) candidatejet = ak.firsts(fatjets) candidatejet["genMatchFull"] = VQQgenmatch(events) nelectrons = ak.sum( (events.Electron.pt > 10.) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.VETO), axis=1, ) nmuons = ak.sum( (events.Muon.pt > 10) & (abs(events.Muon.eta) < 2.1) & (events.Muon.pfRelIso04_all < 0.4) & (events.Muon.looseId), axis=1, ) ntaus = ak.sum( (events.Tau.pt > 20.) & (events.Tau.idDecayMode) & (events.Tau.rawIso < 5) & (abs(events.Tau.eta) < 2.3), axis=1, ) cuts = { "S_fatjet_trigger": trigger_fatjet, "S_pt": candidatejet.pt > 525, "S_eta": (abs(candidatejet.eta) < 2.5), "S_msdcorr": (candidatejet.msdcorr > 40), "S_rho": ((candidatejet.qcdrho > -5.5) & (candidatejet.qcdrho < -2.)), "S_jetid": (candidatejet.isTight), "S_VQQgenmatch": (candidatejet.genMatchFull), "S_noelectron": (nelectrons == 0), "S_nomuon": (nmuons == 0), "S_notau": (ntaus == 0), } for name, cut in cuts.items(): print(name, cut) selection.add(name, cut) if isRealData: genflavor = 0 #candidatejet.pt.zeros_like().pad(1, clip=True).fillna(-1).flatten() if not isRealData: weights_signal.add('genweight', events.genWeight) #add_pileup_weight(weights_signal, events.Pileup.nPU, self._year, dataset) add_jetTriggerWeight(weights_signal, candidatejet.msdcorr, candidatejet.pt, self._year) bosons = getBosons(events.GenPart) genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0) add_VJets_NLOkFactor(weights_signal, genBosonPt, self._year, dataset) #genflavor = matchedBosonFlavor(candidatejet, bosons).pad(1, clip=True).fillna(-1).flatten() allcuts_signal = set() output['cutflow_signal'][dataset]['none'] += float( weights_signal.weight().sum()) for cut in cuts: allcuts_signal.add(cut) output['cutflow_signal'][dataset][cut] += float( weights_signal.weight()[selection.all( *allcuts_signal)].sum()) fill('signal', cuts.keys()) ####################### if 'muonCR' in self._region: if isRealData: trigger_muon = np.zeros(len(events), dtype='bool') for t in self._muontriggers[self._year]: trigger_muon = trigger_muon | events.HLT[t] else: trigger_muon = np.ones(len(events), dtype='bool') candidatejet = ak.firsts(fatjets) candidatemuon = events.Muon[:, :5] jets = events.Jet[((events.Jet.pt > 50.) & (abs(events.Jet.eta) < 2.5) & (events.Jet.isTight))][:, :4] dphi = abs(jets.delta_phi(candidatejet)) ak4_away = jets[(dphi > 0.8)] nelectrons = ak.sum( (events.Electron.pt > 10.) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.VETO), axis=1, ) nmuons = ak.sum( (events.Muon.pt > 10) & (abs(events.Muon.eta) < 2.4) & (events.Muon.pfRelIso04_all < 0.25) & (events.Muon.looseId), axis=1, ) ntaus = ak.sum( (events.Tau.pt > 20.) & (events.Tau.idDecayMode) & (events.Tau.rawIso < 5) & (abs(events.Tau.eta) < 2.3) & (events.Tau.idMVAoldDM2017v1 >= 16), axis=1, ) cuts = { "CR1_muon_trigger": trigger_muon, "CR1_jet_pt": (candidatejet.pt > 525), "CR1_jet_eta": (abs(candidatejet.eta) < 2.5), "CR1_jet_msd": (candidatejet.msdcorr > 40), "CR1_jet_rho": ((candidatejet.qcdrho > -5.5) & (candidatejet.qcdrho < -2.)), "CR1_mu_pt": ak.any(candidatemuon.pt > 55, axis=1), "CR1_mu_eta": ak.any(abs(candidatemuon.eta) < 2.1, axis=1), "CR1_mu_IDLoose": ak.any(candidatemuon.looseId, axis=1), "CR1_mu_isolationTight": ak.any(candidatemuon.pfRelIso04_all < 0.15, axis=1), "CR1_muonDphiAK8": ak.any( abs(candidatemuon.delta_phi(candidatejet)) > 2 * np.pi / 3, axis=1), "CR1_ak4btagMedium08": (ak.max(ak4_away.btagCSVV2, axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._year]['medium'] ), #(ak4_away.btagCSVV2.max() > 0.8838), "CR1_noelectron": (nelectrons == 0), "CR1_onemuon": (nmuons == 1), "CR1_notau": (ntaus == 0), } for name, cut in cuts.items(): selection.add(name, cut) if isRealData: genflavor = 0 #candidatejet.pt.zeros_like().pad(1, clip=True).fillna(-1).flatten() if not isRealData: weights_muonCR.add('genweight', events.genWeight) #add_pileup_weight(weights_muonCR, events.Pileup.nPU, self._year, dataset) #add_singleMuTriggerWeight(weights, candidatejet.msdcorr, candidatejet.pt, self._year) bosons = getBosons(events.GenPart) genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0) #add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset) #genflavor = matchedBosonFlavor(candidatejet, bosons).pad(1, clip=True).fillna(-1).flatten() allcuts_ttbar_muoncontrol = set() output['cutflow_muonCR'][dataset]['none'] += float( weights_muonCR.weight().sum()) for cut in cuts: allcuts_ttbar_muoncontrol.add(cut) output['cutflow_muonCR'][dataset][cut] += float( weights_muonCR.weight()[selection.all( *allcuts_ttbar_muoncontrol)].sum()) fill('muonCR', cuts.keys()) ####################### if 'VtaggingCR' in self._region: if isRealData: trigger_muon = np.zeros(len(events), dtype='bool') for t in self._muontriggers[self._year]: trigger_muon = trigger_muon | events.HLT[t] else: trigger_muon = np.ones(len(events), dtype='bool') candidatejet = ak.firsts(fatjets) candidatemuon = ak.firsts(events.Muon) jets = events.Jet[((events.Jet.pt > 30.) & (abs(events.Jet.eta) < 2.4))][:, :4] dr_ak4_ak8 = jets.delta_r(candidatejet) dr_ak4_muon = jets.delta_r(candidatemuon) ak4_away = jets[(dr_ak4_ak8 > 0.8)] # & (dr_ak4_muon > 0.4)] mu_p4 = ak.zip( { "pt": ak.fill_none(candidatemuon.pt, 0), "eta": ak.fill_none(candidatemuon.eta, 0), "phi": ak.fill_none(candidatemuon.phi, 0), "mass": ak.fill_none(candidatemuon.mass, 0), }, with_name="PtEtaPhiMLorentzVector") met_p4 = ak.zip( { "pt": ak.from_iter([[v] for v in events.MET.pt]), "eta": ak.from_iter([[v] for v in np.zeros(len(events))]), "phi": ak.from_iter([[v] for v in events.MET.phi]), "mass": ak.from_iter([[v] for v in np.zeros(len(events))]), }, with_name="PtEtaPhiMLorentzVector") Wleptoniccandidate = mu_p4 + met_p4 nelectrons = ak.sum( ((events.Electron.pt > 10.) & (abs(events.Electron.eta) < 2.5) & (events.Electron.cutBased >= events.Electron.VETO)), axis=1, ) n_tight_muon = ak.sum( ((events.Muon.pt > 53) & (abs(events.Muon.eta) < 2.1) & (events.Muon.tightId)), axis=1, ) n_loose_muon = ak.sum( ((events.Muon.pt > 20) & (events.Muon.looseId) & (abs(events.Muon.eta) < 2.4)), axis=1, ) ntaus = ak.sum( ((events.Tau.pt > 20.) & (events.Tau.idDecayMode) & (events.Tau.rawIso < 5) & (abs(events.Tau.eta) < 2.3) & (events.Tau.idMVAoldDM2017v1 >= 16)), axis=1, ) cuts = { "CR2_muon_trigger": trigger_muon, "CR2_jet_pt": (candidatejet.pt > 200), "CR2_jet_eta": (abs(candidatejet.eta) < 2.5), "CR2_jet_msd": (candidatejet.msdcorr > 40), "CR2_mu_pt": candidatemuon.pt > 53, "CR2_mu_eta": (abs(candidatemuon.eta) < 2.1), "CR2_mu_IDTight": candidatemuon.tightId, "CR2_mu_isolationTight": (candidatemuon.pfRelIso04_all < 0.15), "CR2_muonDphiAK8": abs(candidatemuon.delta_phi(candidatejet)) > 2 * np.pi / 3, "CR2_ak4btagMedium08": (ak.max(ak4_away.btagCSVV2, axis=1, mask_identity=False) > BTagEfficiency.btagWPs[self._year]['medium']), "CR2_leptonicW": ak.flatten(Wleptoniccandidate.pt > 200), "CR2_MET": (events.MET.pt > 40.), "CR2_noelectron": (nelectrons == 0), "CR2_one_tightMuon": (n_tight_muon == 1), "CR2_one_looseMuon": (n_loose_muon == 1), #"CR2_notau" : (ntaus==0), } for name, cut in cuts.items(): print(name, cut) selection.add(name, cut) #weights.add('metfilter', events.Flag.METFilters) if isRealData: genflavor = 0 #candidatejet.pt.zeros_like().pad(1, clip=True).fillna(-1).flatten() if not isRealData: weights_VtaggingCR.add('genweight', events.genWeight) #add_pileup_weight(weights_VtaggingCR, events.Pileup.nPU, self._year, dataset) #add_singleMuTriggerWeight(weights, abs(candidatemuon.eta), candidatemuon.pt, self._year) bosons = getBosons(events.GenPart) genBosonPt = ak.fill_none(ak.firsts(bosons.pt), 0) #add_VJets_NLOkFactor(weights, genBosonPt, self._year, dataset) #genflavor = matchedBosonFlavor(candidatejet, bosons).pad(1, clip=True).fillna(-1).flatten() #b-tag weights allcuts_vselection = set() output['cutflow_VtaggingCR'][dataset]['none'] += float( weights_VtaggingCR.weight().sum()) for cut in cuts: allcuts_vselection.add(cut) output['cutflow_VtaggingCR'][dataset][cut] += float( weights_VtaggingCR.weight()[selection.all( *allcuts_vselection)].sum()) fill('VtaggingCR', cuts.keys()) return output