예제 #1
0
def main(countsfile, outpath, countsfile2, strand_symmetry, force_overwrite,
         dry_run, verbose):
    args = locals()

    table = LoadTable(countsfile, sep='\t')
    if not dry_run:
        log_file_path = os.path.join(util.abspath(outpath),
                                     'spectra_analysis.log')
        LOGGER.log_file_path = log_file_path
        LOGGER.log_message(str(args), label='vars')

    LOGGER.input_file(countsfile)
    # if there's a strand symmetry argument then we don't need a second file
    if strand_symmetry:
        group_label = 'strand'
        counts_table = util.spectra_table(table, group_label)

    if not strand_symmetry:
        group_label = 'group'

        # be sure there's two files
        counts_table2 = LoadTable(countsfile2, sep='\t')
        LOGGER.input_file(countsfile2)
        counts_table2 = counts_table2.with_new_column('group',
                                                      lambda x: '2', columns=counts_table2.header[0])
        counts_table1 = table.with_new_column('group',
                                              lambda x: '1', columns=table.header[0])

        counts_table1 = util.spectra_table(counts_table1, group_label)
        counts_table2 = util.spectra_table(counts_table2, group_label)

        # now combine
        header = ['group'] + counts_table2.header[:-1]
        raw1 = counts_table1.tolist(header)
        raw2 = counts_table2.tolist(header)
        counts_table = LoadTable(header=header, rows=raw1 + raw2)

        if verbose:
            print(counts_table)

    # spectra table has [count, start, end, group] order
    # we reduce comparisons to a start base
    results = []
    saveable = {}
    for start_base in counts_table.distinct_values('start'):
        subtable = counts_table.filtered('start == "%s"' % start_base)
        columns = [c for c in counts_table.header if c != 'start']
        subtable = subtable.get_columns(columns)
        total_re, dev, df, collated, formula = log_lin.spectra_difference(
            subtable, group_label)
        r = [list(x) for x in collated.to_records(index=False)]

        if not strand_symmetry:
            grp_labels = {'1': countsfile,
                          '2': countsfile2}
            grp_index = list(collated.columns).index('group')
            for row in r:
                row[grp_index] = grp_labels[row[grp_index]]

        p = chisqprob(dev, df)
        if p < 1e-6:
            prob = "%.2e" % p
        else:
            prob = "%.6f" % p

        for row in r:
            row.insert(0, start_base)
            row.append(prob)

        results += r

        significance = ["RE=%.6f" % total_re, "Dev=%.2f" % dev, "df=%d" % df,
                        "p=%s" % p]

        stats = "  :  ".join(significance)
        print("Start base=%s  %s" % (start_base, stats))
        saveable[start_base] = dict(rel_entropy=total_re, deviance=dev,
                                    df=df, prob=p,
                                    formula=formula, stats=collated.to_json())

    table = LoadTable(header=['start_base'] + list(collated.columns) +
                             ['prob'],
                      rows=results, digits=5).sorted(columns='ret')
    json_path = None

    outpath = util.abspath(outpath)
    if not dry_run:
        util.makedirs(outpath)
        json_path = os.path.join(outpath, 'spectra_analysis.json')
        dump_json(saveable, json_path)
        LOGGER.output_file(json_path)
        table_path = os.path.join(outpath, 'spectra_summary.txt')
        table.write(table_path, sep='\t')
        LOGGER.output_file(table_path)
        LOGGER.log_message(str(significance), label="significance")
예제 #2
0
def collate(base_path, output_path, exclude_paths, overwrite):
    """collates all classifier performance stats and writes
    to a single tsv file"""
    LOGGER.log_args()
    outpath = os.path.join(output_path, "collated.tsv.gz")
    logfile_path = os.path.join(output_path, "collated.log")
    if os.path.exists(outpath) and not overwrite:
        click.secho(f"Skipping. {outpath} exists. "
                    "Use overwrite to force.",
                    fg='green')
        exit(0)

    stat_fns = exec_command(f'find {base_path} -name' ' "*performance.json*"')
    stat_fns = stat_fns.splitlines()
    if not stat_fns:
        msg = f'No files matching "*performance.json*" in {base_path}'
        click.secho(msg, fg='red')
        return

    LOGGER.log_file_path = logfile_path

    records = []
    keys = set()
    exclude_paths = [] if exclude_paths is None else exclude_paths.split(',')
    num_skipped = 0
    for fn in tqdm(stat_fns, ncols=80):
        if skip_path(exclude_paths, fn):
            num_skipped += 1
            LOGGER.log_message(fn, label="SKIPPED FILE")
            continue

        LOGGER.input_file(fn)
        data = load_json(fn)
        labels = data['classification_report']['labels']
        fscores = data['classification_report']['f-score']
        row = {
            "stat_path": fn,
            "classifier_path": data["classifier_path"],
            "auc": data["auc"],
            "algorithm": data["classifier_label"],
            "mean_precision": data["mean_precision"],
            f"fscore({labels[0]})": fscores[0],
            f"fscore({labels[1]})": fscores[1],
            'balanced_accuracy': data['balanced_accuracy']
        }
        row.update(data["feature_params"])
        keys.update(row.keys())
        records.append(row)

    columns = sorted(keys)
    rows = list(map(lambda r: [r.get(c, None) for c in columns], records))
    table = LoadTable(header=columns, rows=rows)
    table = table.sorted(reverse="auc")
    table = table.with_new_column(
        "name",
        lambda x: model_name_from_features(*x),
        columns=["flank_size", "feature_dim", "usegc", "proximal"])
    table = table.with_new_column("size",
                                  sample_size_from_path,
                                  columns="classifier_path")
    table.write(outpath)
    LOGGER.output_file(outpath)

    # make summary statistics via grouping by factors
    factors = [
        "algorithm", "name", "flank_size", "feature_dim", "proximal", "usegc",
        "size"
    ]
    summary = summary_stat_table(table, factors=factors)
    outpath = os.path.join(output_path, "summary_statistics.tsv.gz")
    summary.write(outpath)
    LOGGER.output_file(outpath)
    if num_skipped:
        click.secho("Skipped %d files that matched exclude_paths" %
                    num_skipped,
                    fg='red')