## MULTIPLYING RETWEETS FOLLOWERS print("multiplying nr. of retweet followers by sentiments.") sentanalyzer = SentimentAnalyzer() sentanalyzer.merge_tweets_with_retweets(coin) #print(coin.tweets) sentanalyzer.sent_mul_tweet_followers(coin) sentanalyzer.sent_mul_retweet_followers(coin) print(len(coin.retweets)) print(coin.retweets.tail()) ## GROUPING RETWEETS BY HOUR print("grouping retweets by hour basis") sentanalyzer.group_retweet_by_hour(coin) print(coin.grtdf.head()) print("grouping tweets by hour basis") sentanalyzer.group_tweet_by_hour(coin) print(coin.gtdf.tail()) ## COIN PRICE coinprice = CoinPrice() coinprice.read_and_sort_price(coin) print(coin.pricehourly.tail()) phase = "prepare2" coin.save_to_storeage(phase)
'eu_market', 'us_market', 'day', 'max_datetime_x', 'max_datetime_y' ], inplace=True) #cointrain.add_log_columns(data,strCols=True) print(len(data)) print('data.columns') print(data.columns) #print(data) coin.data_to_predict = data coin.save_to_storeage('train') #min_max_scaler = preprocessing.MinMaxScaler() #np_scaled = min_max_scaler.fit_transform(data) #data = pd.DataFrame(np_scaled) #coin.save_scaler(min_max_scaler) #cointrain.add_square_columns(data,strCols=False) def precision(y_true, y_pred): threshold = 0.55 mult = 0.5 / threshold true_positives = K.sum( K.round(K.clip(y_true * y_pred * mult, 0, 1))) predicted_positives = K.sum(