예제 #1
0
def test_reference_values(xyz, ref):
    L_A = 64 / numpy.pi / 5
    cam16 = colorio.CAM16UCS(0.69, 20, L_A)
    out = cam16.from_xyz100(xyz)
    ref = numpy.array(ref)
    assert numpy.all(abs(ref - out) < 1.0e-14 * ref)
    return
예제 #2
0
def test_conversion_variants(xyz):
    # test with srgb conditions
    L_A = 64 / numpy.pi / 5
    cam16 = colorio.CAM16UCS(0.69, 20, L_A)
    out = cam16.to_xyz100(cam16.from_xyz100(xyz))
    assert numpy.all(abs(xyz - out) < 1.0e-14)
    return
예제 #3
0
파일: main.py 프로젝트: BrianDo2005/cplot
def get_srgb(angle, absval_scaled):
    assert numpy.all(absval_scaled >= 0)
    assert numpy.all(absval_scaled <= 1)

    # assert variant == "CAM16UCS":
    L_A = 64 / numpy.pi / 5
    cam = colorio.CAM16UCS(0.69, 20, L_A)
    srgb = colorio.SrgbLinear()
    # r0 = find_max_srgb_radius(cam, srgb, L=50)
    r0 = 21.65824845433235

    # map (r, angle) to a point in the color space
    rd = r0 - r0 * 2 * abs(absval_scaled - 0.5)

    # rotate the angles such a "green" color represents positive real values
    offset = 1.0 * numpy.pi
    cam_pts = numpy.array(
        [
            100 * absval_scaled,
            rd * numpy.cos(angle + offset),
            rd * numpy.sin(angle + offset),
        ]
    )

    # now just translate to srgb
    srgb_vals = srgb.to_srgb1(srgb.from_xyz100(cam.to_xyz100(cam_pts)))
    # assert numpy.all(srgb.from_xyz100(cam.to_xyz100(cam_pts)) <= 1.0)
    srgb_vals[srgb_vals > 1] = 1.0
    srgb_vals[srgb_vals < 0] = 0.0

    return numpy.moveaxis(srgb_vals, 0, -1)
예제 #4
0
def test_whitepoint():
    # With infinite luminance of the adapting field, the whitepoint is found
    # at (100, 0, 0).
    L_A = numpy.inf
    cam16 = colorio.CAM16UCS(0.69, 20, L_A)
    out = cam16.from_xyz100(colorio.illuminants.whitepoints_cie1931["D65"])
    assert numpy.all(out == [100, 0, 0])
    return
예제 #5
0
def create_colormap(L=50):
    L_A = 64 / numpy.pi / 5
    cam = colorio.CAM16UCS(0.69, 20, L_A)
    # cam = colorio.CAM02('UCS', 0.69, 20, L_A)
    # cam = colorio.CIELAB()
    srgb = colorio.SrgbLinear()

    r0 = find_max_srgb_radius(cam, srgb, L=L)

    n = 256
    alpha = numpy.linspace(0, 2 * numpy.pi, n, endpoint=False)

    pts = numpy.array(
        [numpy.full(n, L), r0 * numpy.cos(alpha), r0 * numpy.sin(alpha)])
    vals = srgb.from_xyz100(cam.to_xyz100(pts))

    # show the colors
    vals = srgb.to_srgb1(vals)
    return vals
예제 #6
0
import pytest

import colorio


@pytest.mark.parametrize(
    "cs,k0,level",
    [
        [colorio.XYY(), 2, 0.4],
        [colorio.CIELAB(), 0, 50],
        [colorio.CAM16UCS(0.69, 20, 4.074), 0, 50],
    ],
)
def test_visible_slice(cs, k0, level):
    cs.show_visible_slice(k0, level)
    # cs.save_visible_slice("visible-slice.png", k0, level)
    return


@pytest.mark.parametrize(
    "cs,k0,level",
    [[colorio.XYY(), 2, 0.4], [colorio.CIELUV(), 0, 50],
     [colorio.JzAzBz(), 0, 0.5]],
)
def test_macadam(cs, k0, level):
    cs.show_macadam(k0, level)
    cs.save_macadam("macadam.png", k0, level)
    return


@pytest.mark.parametrize(
예제 #7
0
def get_srgb1(z, alpha=1, colorspace="CAM16"):
    assert alpha >= 0

    # A number of scalings f that map the magnitude [0, infty] to [0, 1] are possible.
    # One desirable property is
    # (1)  f(1/r) = 1 - f(r).
    # This makes sure that the representation of the inverse of a function is exactly as
    # light as the original function is dark. The function g_a(r) = 1 - a^|r| (with some
    # 0 < a < 1), as it is sometimes suggested (e.g., on Wikipedia
    # <https://en.wikipedia.org/wiki/Domain_coloring>) does _not_ fulfill (1).  The
    # function 2/pi * arctan(r) is _very_ close to g_(1/2) between 0 and 1 and has that
    # property, so this is good alternative. Here, we are using the simple r^a / r^a+1
    # with a configurable parameter a.

    def abs_scaling(r):
        # Fulfills (1) for any alpha >= 0
        return r**alpha / (r**alpha + 1)

    # def abs_scaling(r):
    #     # Fulfills (1).
    #    return 2 / numpy.pi * numpy.arctan(r)

    angle = numpy.arctan2(z.imag, z.real)
    absval_scaled = abs_scaling(numpy.abs(z))

    # We may have NaNs, so don't be too strict here.
    # assert numpy.all(absval_scaled >= 0)
    # assert numpy.all(absval_scaled <= 1)

    # It'd be lovely if one could claim that the grayscale of the cplot represents
    # exactly the absolute value of the complex number. The grayscale is computed as the
    # Y component of the XYZ-representation of the color, for linear SRGB values as
    #
    #     0.2126 * r + 0.7152 * g + 0.722 * b.
    #
    # Unfortunately, there is no perceptually uniform color space yet that uses
    # Y-luminance. CIELAB, CIECAM02, and CAM16 have their own values.
    if colorspace.upper() == "CAM16":
        L_A = 64 / numpy.pi / 5
        cam = colorio.CAM16UCS(0.69, 20, L_A)
        srgb = colorio.SrgbLinear()
        # The max radius is about 21.7, but crank up colors a little bit to make the
        # images more saturated. This leads to SRGB-cut-off of course.
        # r0 = find_max_srgb_radius(cam, srgb, L=50)
        # r0 = 21.65824845433235
        r0 = 25.0
        # Rotate the angles such a "green" color represents positive real values. The
        # rotation is chosen such that the ratio g/(r+b) (in rgb) is the largest for the
        # point 1.0.
        offset = 0.916_708 * numpy.pi
        # Map (r, angle) to a point in the color space; bicone mapping similar to what
        # HSL looks like <https://en.wikipedia.org/wiki/HSL_and_HSV>.
        rd = r0 - r0 * 2 * abs(absval_scaled - 0.5)
        cam_pts = numpy.array([
            100 * absval_scaled,
            rd * numpy.cos(angle + offset),
            rd * numpy.sin(angle + offset),
        ])
        # now just translate to srgb
        srgb_vals = srgb.to_srgb1(srgb.from_xyz100(cam.to_xyz100(cam_pts)))
        # Cut off the outliers. This restriction makes the representation less perfect,
        # but that's what it is with the SRGB color space.
        srgb_vals[srgb_vals > 1] = 1.0
        srgb_vals[srgb_vals < 0] = 0.0
    elif colorspace.upper() == "CIELAB":
        cielab = colorio.CIELAB()
        srgb = colorio.SrgbLinear()
        # The max radius is about 29.5, but crank up colors a little bit to make the
        # images more saturated. This leads to SRGB-cut-off of course.
        # r0 = find_max_srgb_radius(cielab, srgb, L=50)
        # r0 = 29.488203674554825
        r0 = 45.0
        # Rotate the angles such a "green" color represents positive real values. The
        # rotation is chosen such that the ratio g/(r+b) (in rgb) is the largest for the
        # point 1.0.
        offset = 0.893_686_8 * numpy.pi
        # Map (r, angle) to a point in the color space; bicone mapping similar to what
        # HSL looks like <https://en.wikipedia.org/wiki/HSL_and_HSV>.
        rd = r0 - r0 * 2 * abs(absval_scaled - 0.5)
        lab_pts = numpy.array([
            100 * absval_scaled,
            rd * numpy.cos(angle + offset),
            rd * numpy.sin(angle + offset),
        ])
        # now just translate to srgb
        srgb_vals = srgb.to_srgb1(srgb.from_xyz100(cielab.to_xyz100(lab_pts)))
        # Cut off the outliers. This restriction makes the representation less perfect,
        # but that's what it is with the SRGB color space.
        srgb_vals[srgb_vals > 1] = 1.0
        srgb_vals[srgb_vals < 0] = 0.0
    else:
        assert (
            colorspace.upper() == "HSL"
        ), f"Illegal colorspace {colorspace}. Pick one of CAM16, CIELAB, HSL."
        hsl = colorio.HSL()
        # rotate by 120 degrees to have green (0, 1, 0) for real positive numbers
        offset = 120
        hsl_vals = numpy.array([
            numpy.mod(angle / (2 * numpy.pi) * 360 + offset, 360),
            numpy.ones(angle.shape),
            absval_scaled,
        ])
        srgb_vals = hsl.to_srgb1(hsl_vals)
        # iron out the -1.82131e-17 round-offs
        srgb_vals[srgb_vals < 0] = 0

    return numpy.moveaxis(srgb_vals, 0, -1)