def generate_documentation_plots(output_directory): """ Generates documentation plots. Parameters ---------- output_directory : unicode Output directory. """ colour.utilities.filter_warnings() colour_style() np.random.seed(0) # ************************************************************************* # "README.rst" # ************************************************************************* arguments = { 'tight_layout': True, 'transparent_background': True, 'filename': os.path.join(output_directory, 'Examples_Plotting_Visible_Spectrum.png') } plot_visible_spectrum('CIE 1931 2 Degree Standard Observer', **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Illuminant_F1_SD.png') plot_single_illuminant_sd('FL1', **arguments) arguments['filename'] = os.path.join(output_directory, 'Examples_Plotting_Blackbodies.png') blackbody_sds = [ colour.sd_blackbody(i, colour.SpectralShape(0, 10000, 10)) for i in range(1000, 15000, 1000) ] plot_multi_sds( blackbody_sds, y_label='W / (sr m$^2$) / m', use_sds_colours=True, normalise_sds_colours=True, legend_location='upper right', bounding_box=(0, 1250, 0, 2.5e15), **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Cone_Fundamentals.png') plot_single_cmfs( 'Stockman & Sharpe 2 Degree Cone Fundamentals', y_label='Sensitivity', bounding_box=(390, 870, 0, 1.1), **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Luminous_Efficiency.png') sd_mesopic_luminous_efficiency_function = ( colour.sd_mesopic_luminous_efficiency_function(0.2)) plot_multi_sds( (sd_mesopic_luminous_efficiency_function, colour.PHOTOPIC_LEFS['CIE 1924 Photopic Standard Observer'], colour.SCOTOPIC_LEFS['CIE 1951 Scotopic Standard Observer']), y_label='Luminous Efficiency', legend_location='upper right', y_tighten=True, margins=(0, 0, 0, .1), **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_BabelColor_Average.png') plot_multi_sds( colour.COLOURCHECKERS_SDS['BabelColor Average'].values(), use_sds_colours=True, title=('BabelColor Average - ' 'Spectral Distributions'), **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_ColorChecker_2005.png') plot_single_colour_checker( 'ColorChecker 2005', text_parameters={'visible': False}, **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Chromaticities_Prediction.png') plot_corresponding_chromaticities_prediction(2, 'Von Kries', 'Bianco', **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png') plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(['A', 'B', 'C'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png') RGB = np.random.random((32, 32, 3)) plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, 'ITU-R BT.709', colourspaces=['ACEScg', 'S-Gamut'], show_pointer_gamut=True, **arguments) arguments['filename'] = os.path.join(output_directory, 'Examples_Plotting_CRI.png') plot_single_sd_colour_rendering_index_bars(colour.ILLUMINANTS_SDS['FL2'], **arguments) # ************************************************************************* # Documentation # ************************************************************************* arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_CVD_Simulation_Machado2009.png') plot_cvd_simulation_Machado2009(RGB, **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Colour_Checker.png') plot_single_colour_checker('ColorChecker 2005', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Colour_Checkers.png') plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005'], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_SD.png') data = { 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360 } sd = colour.SpectralDistribution(data, name='Custom') plot_single_sd(sd, **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_SDs.png') data_1 = { 500: 0.004900, 510: 0.009300, 520: 0.063270, 530: 0.165500, 540: 0.290400, 550: 0.433450, 560: 0.594500 } data_2 = { 500: 0.323000, 510: 0.503000, 520: 0.710000, 530: 0.862000, 540: 0.954000, 550: 0.994950, 560: 0.995000 } spd1 = colour.SpectralDistribution(data_1, name='Custom 1') spd2 = colour.SpectralDistribution(data_2, name='Custom 2') plot_multi_sds([spd1, spd2], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_CMFS.png') plot_single_cmfs('CIE 1931 2 Degree Standard Observer', **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_CMFS.png') cmfs = ('CIE 1931 2 Degree Standard Observer', 'CIE 1964 10 Degree Standard Observer') plot_multi_cmfs(cmfs, **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Illuminant_SD.png') plot_single_illuminant_sd('A', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Illuminant_SDs.png') plot_multi_illuminant_sds(['A', 'B', 'C'], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Visible_Spectrum.png') plot_visible_spectrum(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Lightness_Function.png') plot_single_lightness_function('CIE 1976', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Lightness_Functions.png') plot_multi_lightness_functions(['CIE 1976', 'Wyszecki 1963'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Luminance_Function.png') plot_single_luminance_function('CIE 1976', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Luminance_Functions.png') plot_multi_luminance_functions(['CIE 1976', 'Newhall 1943'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Blackbody_Spectral_Radiance.png') plot_blackbody_spectral_radiance( 3500, blackbody='VY Canis Major', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Blackbody_Colours.png') plot_blackbody_colours(colour.SpectralShape(150, 12500, 50), **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Colour_Swatch.png') RGB = ColourSwatch(RGB=(0.32315746, 0.32983556, 0.33640183)) plot_single_colour_swatch(RGB, **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Colour_Swatches.png') RGB_1 = ColourSwatch(RGB=(0.45293517, 0.31732158, 0.26414773)) RGB_2 = ColourSwatch(RGB=(0.77875824, 0.57726450, 0.50453169)) plot_multi_colour_swatches([RGB_1, RGB_2], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_Function.png') plot_single_function(lambda x: x ** (1 / 2.2), **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_Functions.png') functions = { 'Gamma 2.2': lambda x: x ** (1 / 2.2), 'Gamma 2.4': lambda x: x ** (1 / 2.4), 'Gamma 2.6': lambda x: x ** (1 / 2.6), } plot_multi_functions(functions, **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Image.png') path = os.path.join(colour.__path__[0], '..', 'docs', '_static', 'Logo_Medium_001.png') plot_image(colour.read_image(str(path)), **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Corresponding_Chromaticities_Prediction.png') plot_corresponding_chromaticities_prediction(1, 'Von Kries', 'CAT02', **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Spectral_Locus.png') plot_spectral_locus(spectral_locus_colours='RGB', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_Colours.png') plot_chromaticity_diagram_colours(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram.png') plot_chromaticity_diagram(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1931.png') plot_chromaticity_diagram_CIE1931(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1960UCS.png') plot_chromaticity_diagram_CIE1960UCS(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1976UCS.png') plot_chromaticity_diagram_CIE1976UCS(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDs_In_Chromaticity_Diagram.png') A = colour.ILLUMINANTS_SDS['A'] D65 = colour.ILLUMINANTS_SDS['D65'] plot_sds_in_chromaticity_diagram([A, D65], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDs_In_Chromaticity_Diagram_CIE1931.png') plot_sds_in_chromaticity_diagram_CIE1931([A, D65], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDs_In_Chromaticity_Diagram_CIE1960UCS.png') plot_sds_in_chromaticity_diagram_CIE1960UCS([A, D65], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_SDs_In_Chromaticity_Diagram_CIE1976UCS.png') plot_sds_in_chromaticity_diagram_CIE1976UCS([A, D65], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Pointer_Gamut.png') plot_pointer_gamut(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram.png') plot_RGB_colourspaces_in_chromaticity_diagram( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram_CIE1931.png') plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plot_RGB_colourspaces_in_chromaticity_diagram_CIE1960UCS( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plot_RGB_colourspaces_in_chromaticity_diagram_CIE1976UCS( ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_Plot.png') RGB = np.random.random((128, 128, 3)) plot_RGB_chromaticities_in_chromaticity_diagram(RGB, 'ITU-R BT.709', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1931.png') plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931( RGB, 'ITU-R BT.709', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plot_RGB_chromaticities_in_chromaticity_diagram_CIE1960UCS( RGB, 'ITU-R BT.709', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Chromaticities_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plot_RGB_chromaticities_in_chromaticity_diagram_CIE1976UCS( RGB, 'ITU-R BT.709', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_Chromaticity_Diagram.png') plot_ellipses_MacAdam1942_in_chromaticity_diagram(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1931.png') plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1931(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1960UCS.png') plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1960UCS(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_' 'Chromaticity_Diagram_CIE1976UCS.png') plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1976UCS(**arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Single_CCTF.png') plot_single_cctf('ITU-R BT.709', **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Multi_CCTFs.png') plot_multi_cctfs(['ITU-R BT.709', 'sRGB'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_Munsell_Value_Function.png') plot_single_munsell_value_function('ASTM D1535-08', **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_Munsell_Value_Functions.png') plot_multi_munsell_value_functions(['ASTM D1535-08', 'McCamy 1987'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Rayleigh_Scattering.png') plot_single_sd_rayleigh_scattering(**arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_The_Blue_Sky.png') plot_the_blue_sky(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Colour_Quality_Bars.png') illuminant = colour.ILLUMINANTS_SDS['FL2'] light_source = colour.LIGHT_SOURCES_SDS['Kinoton 75P'] light_source = light_source.copy().align(colour.SpectralShape(360, 830, 1)) cqs_i = colour.colour_quality_scale(illuminant, additional_data=True) cqs_l = colour.colour_quality_scale(light_source, additional_data=True) plot_colour_quality_bars([cqs_i, cqs_l], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Colour_Rendering_Index_Bars.png') illuminant = colour.ILLUMINANTS_SDS['FL2'] plot_single_sd_colour_rendering_index_bars(illuminant, **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_SDs_Colour_Rendering_Indexes_Bars.png') light_source = colour.LIGHT_SOURCES_SDS['Kinoton 75P'] plot_multi_sds_colour_rendering_indexes_bars([illuminant, light_source], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Single_SD_Colour_Quality_Scale_Bars.png') illuminant = colour.ILLUMINANTS_SDS['FL2'] plot_single_sd_colour_quality_scale_bars(illuminant, **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Multi_SDs_Colour_Quality_Scales_Bars.png') light_source = colour.LIGHT_SOURCES_SDS['Kinoton 75P'] plot_multi_sds_colour_quality_scales_bars([illuminant, light_source], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_Planckian_Locus.png') plot_planckian_locus(**arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram.png') plot_planckian_locus_in_chromaticity_diagram(['A', 'B', 'C'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1931.png') plot_planckian_locus_in_chromaticity_diagram_CIE1931(['A', 'B', 'C'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1960UCS.png') plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(['A', 'B', 'C'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png') plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join( output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png') plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments) arguments['filename'] = os.path.join(output_directory, 'Plotting_Plot_RGB_Scatter.png') plot_RGB_scatter(RGB, 'ITU-R BT.709', **arguments) # ************************************************************************* # "tutorial.rst" # ************************************************************************* arguments['filename'] = os.path.join(output_directory, 'Tutorial_Visible_Spectrum.png') plot_visible_spectrum(**arguments) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Sample_SD.png') sample_sd_data = { 380: 0.048, 385: 0.051, 390: 0.055, 395: 0.060, 400: 0.065, 405: 0.068, 410: 0.068, 415: 0.067, 420: 0.064, 425: 0.062, 430: 0.059, 435: 0.057, 440: 0.055, 445: 0.054, 450: 0.053, 455: 0.053, 460: 0.052, 465: 0.052, 470: 0.052, 475: 0.053, 480: 0.054, 485: 0.055, 490: 0.057, 495: 0.059, 500: 0.061, 505: 0.062, 510: 0.065, 515: 0.067, 520: 0.070, 525: 0.072, 530: 0.074, 535: 0.075, 540: 0.076, 545: 0.078, 550: 0.079, 555: 0.082, 560: 0.087, 565: 0.092, 570: 0.100, 575: 0.107, 580: 0.115, 585: 0.122, 590: 0.129, 595: 0.134, 600: 0.138, 605: 0.142, 610: 0.146, 615: 0.150, 620: 0.154, 625: 0.158, 630: 0.163, 635: 0.167, 640: 0.173, 645: 0.180, 650: 0.188, 655: 0.196, 660: 0.204, 665: 0.213, 670: 0.222, 675: 0.231, 680: 0.242, 685: 0.251, 690: 0.261, 695: 0.271, 700: 0.282, 705: 0.294, 710: 0.305, 715: 0.318, 720: 0.334, 725: 0.354, 730: 0.372, 735: 0.392, 740: 0.409, 745: 0.420, 750: 0.436, 755: 0.450, 760: 0.462, 765: 0.465, 770: 0.448, 775: 0.432, 780: 0.421 } sd = colour.SpectralDistribution(sample_sd_data, name='Sample') plot_single_sd(sd, **arguments) arguments['filename'] = os.path.join(output_directory, 'Tutorial_SD_Interpolation.png') sd_copy = sd.copy() sd_copy.interpolate(colour.SpectralShape(400, 770, 1)) plot_multi_sds( [sd, sd_copy], bounding_box=[730, 780, 0.25, 0.5], **arguments) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Sample_Swatch.png') sd = colour.SpectralDistribution(sample_sd_data) cmfs = colour.STANDARD_OBSERVERS_CMFS[ 'CIE 1931 2 Degree Standard Observer'] illuminant = colour.ILLUMINANTS_SDS['D65'] with domain_range_scale('1'): XYZ = colour.sd_to_XYZ(sd, cmfs, illuminant) RGB = colour.XYZ_to_sRGB(XYZ) plot_single_colour_swatch( ColourSwatch('Sample', RGB), text_parameters={'size': 'x-large'}, **arguments) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Neutral5.png') patch_name = 'neutral 5 (.70 D)' patch_sd = colour.COLOURCHECKERS_SDS['ColorChecker N Ohta'][patch_name] with domain_range_scale('1'): XYZ = colour.sd_to_XYZ(patch_sd, cmfs, illuminant) RGB = colour.XYZ_to_sRGB(XYZ) plot_single_colour_swatch( ColourSwatch(patch_name.title(), RGB), text_parameters={'size': 'x-large'}, **arguments) arguments['filename'] = os.path.join(output_directory, 'Tutorial_Colour_Checker.png') plot_single_colour_checker( colour_checker='ColorChecker 2005', text_parameters={'visible': False}, **arguments) arguments['filename'] = os.path.join( output_directory, 'Tutorial_CIE_1931_Chromaticity_Diagram.png') xy = colour.XYZ_to_xy(XYZ) plot_chromaticity_diagram_CIE1931(standalone=False) x, y = xy plt.plot(x, y, 'o-', color='white') # Annotating the plot. plt.annotate( patch_sd.name.title(), xy=xy, xytext=(-50, 30), textcoords='offset points', arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=-0.2')) render( standalone=True, limits=(-0.1, 0.9, -0.1, 0.9), x_tighten=True, y_tighten=True, **arguments) # ************************************************************************* # "basics.rst" # ************************************************************************* arguments['filename'] = os.path.join(output_directory, 'Basics_Logo_Small_001_CIE_XYZ.png') RGB = colour.read_image( os.path.join(output_directory, 'Logo_Small_001.png'))[..., 0:3] XYZ = colour.sRGB_to_XYZ(RGB) colour.plotting.plot_image( XYZ, text_parameters={'text': 'sRGB to XYZ'}, **arguments)
"""Showcases luminous efficiency functions computations.""" from pprint import pprint import colour from colour.utilities import message_box message_box("Luminous Efficiency Functions Computations") message_box("Luminous efficiency functions dataset.") pprint(sorted(colour.SDS_LEFS)) print("\n") message_box( "Computing the mesopic luminous efficiency function for factor:\n\n\t0.2" ) print(colour.sd_mesopic_luminous_efficiency_function(0.2).values)
# -*- coding: utf-8 -*- """ Showcases luminous efficiency functions computations. """ from pprint import pprint import colour from colour.utilities import message_box message_box('Luminous Efficiency Functions Computations') message_box('Luminous efficiency functions dataset.') pprint(sorted(colour.LEFS)) print('\n') message_box(('Computing the mesopic luminous efficiency function for factor:\n' '\n\t0.2')) print(colour.sd_mesopic_luminous_efficiency_function(0.2).values)
message_box('Comparing photopic and scotopic luminous efficiency functions.') LEF_PHOTOPIC = colour.colorimetry.SDS_LEFS_PHOTOPIC[ 'CIE 2008 2 Degree Physiologically Relevant LEF'] LEF_SCOTOPIC = colour.colorimetry.SDS_LEFS_SCOTOPIC[ 'CIE 1951 Scotopic Standard Observer'] plot_multi_sds((LEF_PHOTOPIC, LEF_SCOTOPIC), title='Photopic & Scotopic Luminous Efficiency Functions', y_label='Luminous Efficiency') print('\n') message_box(('Plotting a mesopic luminous efficiency function with given ' 'photopic luminance value:\n' '\n\t0.2')) sd_mesopic_luminous_efficiency_function = ( colour.sd_mesopic_luminous_efficiency_function(0.2)) plot_multi_sds( (sd_mesopic_luminous_efficiency_function, colour.colorimetry. SDS_LEFS_PHOTOPIC['CIE 1924 Photopic Standard Observer'], colour. colorimetry.SDS_LEFS_SCOTOPIC['CIE 1951 Scotopic Standard Observer']), y_label='Luminous Efficiency') print('\n') message_box('Plotting a single "Lightness" function.') plot_single_lightness_function('CIE 1976') print('\n') message_box('Plotting multiple "Lightness" functions.')
print('\n') message_box('Comparing photopic and scotopic luminous efficiency functions.') plot_multi_sds( (colour.PHOTOPIC_LEFS['CIE 2008 2 Degree Physiologically Relevant LEF'], colour.SCOTOPIC_LEFS['CIE 1951 Scotopic Standard Observer']), title='Photopic & Scotopic Luminous Efficiency Functions', y_label='Luminous Efficiency') print('\n') message_box(('Plotting a mesopic luminous efficiency function with given ' 'photopic luminance value:\n' '\n\t0.2')) sd_mesopic_luminous_efficiency_function = ( colour.sd_mesopic_luminous_efficiency_function(0.2)) plot_multi_sds( (sd_mesopic_luminous_efficiency_function, colour.PHOTOPIC_LEFS['CIE 1924 Photopic Standard Observer'], colour.SCOTOPIC_LEFS['CIE 1951 Scotopic Standard Observer']), y_label='Luminous Efficiency') print('\n') message_box('Plotting a single "Lightness" function.') plot_single_lightness_function('CIE 1976') print('\n') message_box('Plotting multiple "Lightness" functions.')