예제 #1
0
for ii in range(NN):
    
    print ii
    kernel = get_kernel(dt=dt, tf=tf, seed=seed+ii, number_of_processors=number_of_processors, verbose=verbose)
    
    background_population = PoissonPopulation('bg', 600, N, kernel) 
    internal_population = IAFPSCDeltaPopulation('int', N, kernel, neuron_params=neuron_params)
    
    
    # for curr_gid in internal_population.gids:
    #     kernel.SetStatus([curr_gid], {'V_m': IC_dist_data['edges'][IC_dist.rvs()]})
    
    monitor = SpikeMonitor('int_m', internal_population, kernel)
    
    connect_one_to_one(background_population,internal_population, .001*.03, kernel, delay=0)
    connect_nsyn(internal_population, internal_population, 16, .001*.03, kernel)
    
    kernel.Simulate(tf*1000)
    
    t, y = monitor.firing_rate(0, tf, .005)
    
    try:
        y_tot += y
    except:
        y_tot = y

print time.time()-t0

plt.plot(t, y_tot/NN)

plt.show()
예제 #2
0
    internal_population = IAFPSCDeltaPopulation('int',
                                                N,
                                                kernel,
                                                neuron_params=neuron_params)

    # for curr_gid in internal_population.gids:
    #     kernel.SetStatus([curr_gid], {'V_m': IC_dist_data['edges'][IC_dist.rvs()]})

    monitor = SpikeMonitor('int_m', internal_population, kernel)

    connect_one_to_one(background_population,
                       internal_population,
                       .001 * .03,
                       kernel,
                       delay=0)
    connect_nsyn(internal_population, internal_population, 16, .001 * .03,
                 kernel)

    kernel.Simulate(tf * 1000)

    t, y = monitor.firing_rate(0, tf, .005)

    try:
        y_tot += y
    except:
        y_tot = y

print time.time() - t0

plt.plot(t, y_tot / NN)

plt.show()
예제 #3
0
                                                kernel,
                                                neuron_params=neuron_params)

    # for curr_gid in internal_population.gids:
    #     kernel.SetStatus([curr_gid], {'V_m': IC_dist_data['edges'][IC_dist.rvs()]})

    monitor = SpikeMonitor('int_m', internal_population, kernel)

    connect_one_to_one(background_population,
                       internal_population,
                       .001 * weight_bg,
                       kernel,
                       delay=0)
    connect_nsyn(internal_population,
                 internal_population,
                 nsyn_recc,
                 .001 * weight_recc,
                 kernel,
                 delay=delay)

    kernel.Simulate(tf * 1000)

    t, y = monitor.firing_rate(0, tf, .005)

    try:
        y_tot += y
    except:
        y_tot = y

print time.time() - t0

plt.plot(t, y_tot / NN)
예제 #4
0
for ii in range(NN):
    
    print ii
    kernel = get_kernel(dt=dt, tf=tf, seed=seed+ii, number_of_processors=number_of_processors, verbose=verbose)
    
    background_population = PoissonPopulation('bg', bgfr, N, kernel) 
    internal_population = IAFPSCDeltaPopulation('int', N, kernel, neuron_params=neuron_params)
    
    
    # for curr_gid in internal_population.gids:
    #     kernel.SetStatus([curr_gid], {'V_m': IC_dist_data['edges'][IC_dist.rvs()]})
    
    monitor = SpikeMonitor('int_m', internal_population, kernel)
    
    connect_one_to_one(background_population,internal_population, .001*weight_bg, kernel, delay=0)
    connect_nsyn(internal_population, internal_population, nsyn_recc, .001*weight_recc, kernel, delay=delay)
    
    kernel.Simulate(tf*1000)
    
    t, y = monitor.firing_rate(0, tf, .005)
    
    try:
        y_tot += y
    except:
        y_tot = y

print time.time()-t0

plt.plot(t, y_tot/NN)

plt.show()