def load_conceptnet_data(opt): # Hacky workaround, you may have to change this # if your models use different pad lengths for r if opt.data.get("maxr", None) is None: if opt.data.rel == "language": opt.data.maxr = 5 else: opt.data.maxr = 1 path = "data/conceptnet/processed/generation/{}.pickle".format( utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt) loaded = data_loader.load_data(path) return data_loader
def load_atomic_data(opt): # Hacky workaround, you may have to change this # if your models use different pad lengths for e1, e2, r if opt.data.get("maxe1", None) is None: opt.data.maxe1 = 17 opt.data.maxe2 = 35 opt.data.maxr = 1 path = "data/atomic/processed/generation/{}.pickle".format( utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt, opt.data.categories) loaded = data_loader.load_data(path) return data_loader
def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("atomic", num) # Loads the correct configuration file config_file = "config/atomic/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Where to find the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") categories = opt.data.categories path = "data/atomic/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt, categories) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") # Initialize text_encoder text_encoder = TextEncoder(config.encoder_path, config.bpe_path) special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] special += [data.blank_token] text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder opt.data.maxe1 = data_loader.max_event opt.data.maxe2 = data_loader.max_effect opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"] n_special = len(special) n_ctx = opt.data.maxe1 + opt.data.maxe2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train") # Get number of examples data.set_max_sizes(data_loader) if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) scorers = ["bleu", "rouge", "cider"] trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) trainer.set_evaluator(opt, model, data_loader) trainer.run()
cfg.device = config.gpu_index eval_opt = cfg.get_eval_parameters(config) model_stuff = data.load_checkpoint(args.model_name) opt = model_stuff["opt"] opt.eval.update(eval_opt) opt.train.dynamic.epoch = 0 print("Loading Data") categories = opt.data.categories path = "data/atomic/processed/generation/{}.pickle".format( utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt, categories) loaded = data_loader.load_data(path) data_loader.batch_size = opt.train.dynamic.bs print("Done.") text_encoder = TextEncoder(config.encoder_path, config.bpe_path) special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] special += [data.blank_token]
print(set_of_categories) # Iterate over sets of categories to compute perplexities for for eval_categories in set_of_categories: print(eval_categories) opt.eval.categories = eval_categories results_name = "{}/{}.{}".format( utils.make_name(opt, prefix="results/{}/".format("losses"), is_dir=True, eval_=True), split, "pickle") print("Will save {} losses to {}".format(split, results_name)) path = "data/atomic/processed/generation/{}.pickle".format( utils.make_name_string(opt.data).replace( "kr_{}".format(opt.data.get("kr", 1)), "kr_1")) data_loader = data.make_data_loader(opt, opt.data.categories) loaded = data_loader.load_data(path) data_loader.batch_size = opt.train.dynamic.bs print("Done.") text_encoder = TextEncoder(config.encoder_path, config.bpe_path) # Set special tokens formatted_categories = ["<{}>".format(cat) for cat in opt.data.categories] special = [data.start_token, data.end_token] special += formatted_categories special += [data.blank_token]
encoder = text_encoder.encoder n_vocab = len(text_encoder.encoder) special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] special += [data.blank_token] for special_token in special: text_encoder.decoder[len(encoder)] = special_token encoder[special_token] = len(encoder) save_path = "data/atomic/processed/{}".format(opt.exp) utils.mkpath(save_path) save_name = os.path.join(save_path, "{}.pickle".format(utils.make_name_string(opt.data))) data_loader = data.make_data_loader(opt, categories) data_loader.load_data("data/atomic/") random.shuffle(data_loader.data["dev"]["total"]) data_loader.make_tensors(text_encoder, special, test=False) data_loader.reset_offsets() opt.data.maxe1 = data_loader.max_event opt.data.maxe2 = data_loader.max_effect opt.data.maxr = 1 save_name = os.path.join(save_path, "{}.pickle".format(utils.make_name_string(opt.data)))
def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("conceptnet", num) # Loads the correct configuration file config_file = "config/conceptnet/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # config.gpu_mode = torch.cuda.is_available() # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Load the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") # Initialize path to pre-set data loader path = "data/conceptnet/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) # Make data loader data_loader = data.make_data_loader(opt) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") text_encoder = TextEncoder(config.encoder_path, config.bpe_path) categories = data.conceptnet_data.conceptnet_relations special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] if loaded: text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder else: for special_token in special: text_encoder.decoder[len(encoder)] = special_token text_encoder.encoder[special_token] = len(encoder) data_loader.make_tensors(text_encoder, special) # Set max size of different parts of relation context_size_e1 = data_loader.max_e1 context_size_e2 = data_loader.max_e2 context_size_r = data_loader.max_r opt.data.maxr = context_size_r n_special = len(special) n_ctx = context_size_e1 + context_size_r + context_size_e2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab # Build Model print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train", keys=["total"]) data.set_max_sizes(data_loader) # Push to GPU if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) print(data_loader.sequences["dev"]["total"].max()) trainer.set_generator(opt, model, data_loader) trainer.set_evaluator(opt, model, data_loader) trainer.run()