예제 #1
0
def check_ics_gtsfile(gtsfile,ics):
    # number of internal coordinates
    nics = count_ics(ics)
    # read gts and prepare Molecule
    molecule = Molecule()
    molecule.set_from_gts(gtsfile)
    molecule.setup()
    # number of vibrational degrees of freedom
    nvdof = len(molecule._ccfreqs)
    # enough internal coordinates
    if nics < nvdof: return False, nvdof
    # calc ic-freqs
    molecule.icfreqs(ics)
    # comparison
    valid = same_freqs(molecule._ccfreqs,molecule._icfreqs)
    return valid, nvdof
예제 #2
0
def path2vadi(tcommon,drst,Eref=None,ics=None,boolint=False,lowfq={},freqscal=1.0,icsbw=None,icsfw=None,symmetry=None):
    '''
    lowfq: in case of imaginary frequencies
    '''
    # boolint as boolean
    if   boolint in [False,"no","No","n","N",None]: boolint = False
    elif boolint in [True,"yes","YES","y","Y"]    : boolint = True
    # check there are internal coordinates if required
    if boolint and ics in [None,False,[]]: raise Exc.NoICS(Exception)
    # expand data in tcommon
    ch,mtp,atnums,masses,mu = tcommon
    # Sorted labels (by s)
    slabels = sd.sorted_points(drst,hess=True)
    # Reference energy
    if Eref is None: lbw, lfw, sbw, sfw, Eref, Efw = sd.rstlimits(drst)
    # Independent variable
    data_x = [drst[label][0] for label in slabels]
    # mep energy (relative value)
    listV0 = [drst[label][1]-Eref for label in slabels]

    # Initializing data
    lcc_tzpe, lcc_frqs, lcc_Vadi = [], [], []
    lic_tzpe, lic_frqs, lic_Vadi = [], [], []
    dMols = {}

    # Updating data
    for label in slabels:
        # data in drst
        s_i, E_i, xms_i,gms_i,Fms_i,v0_i,v1_i,t_i = drst[label]
        # project gradient
        if s_i == 0.0: bool_pg = False
        else         : bool_pg = True
        # lowfq
        if   s_i == 0.0: dlowfq = {}
        elif s_i  < 0.0: dlowfq = lowfq.get("bw",{})
        elif s_i  > 0.0: dlowfq = lowfq.get("fw",{})
        # mass-scaled --> Cartesian coords
        xcc = fncs.ms2cc_x(xms_i,masses,mu)
        gcc = fncs.ms2cc_g(gms_i,masses,mu)
        Fcc = fncs.ms2cc_F(Fms_i,masses,mu)
        # create Molecule instance
        mol = Molecule()
        mol.setvar(xcc=xcc,gcc=gcc,Fcc=Fcc)
        mol.setvar(atonums=atnums,masses=masses)
        mol.setvar(ch=ch,mtp=mtp,V0=E_i)
        mol.setvar(fscal=freqscal)
        if symmetry is not None:
            mol.setvar(pgroup=symmetry[0])
            mol.setvar(rotsigma=symmetry[1])
        mol.prepare()
        mol.setup(mu,projgrad=bool_pg)
        mol.clean_freqs("cc")       # it may be needed with orca
        mol.deal_lowfq(dlowfq,"cc") # deal with low frequencies
        mol.ana_freqs("cc")         # calculate zpe
        # append data
        lcc_tzpe.append(float(mol._cczpe)   )
        lcc_Vadi.append(mol._ccV1 - Eref    )
        lcc_frqs.append(list(mol._ccfreqs))
        # internal coordinates
        if boolint:
           if   s_i < 0.0 and icsbw is not None: mol.icfreqs(icsbw,bool_pg)
           elif s_i > 0.0 and icsfw is not None: mol.icfreqs(icsfw,bool_pg)
           else                                : mol.icfreqs(ics  ,bool_pg)
           mol.deal_lowfq(dlowfq,"ic")
           mol.ana_freqs("ic")
           # append data
           lic_tzpe.append(float(mol._iczpe) )
           lic_Vadi.append(mol._icV1 - Eref  )
           lic_frqs.append(list(mol._icfreqs))
        # save instance
        dMols[label] = (s_i,mol)

    # package data
    tuple_cc = (data_x,lcc_frqs,lcc_tzpe)
    tuple_ic = (data_x,lic_frqs,lic_tzpe)
    # Generate splines
    Vadi_cc = VadiSpline(data_x,lcc_Vadi)
    if boolint: Vadi_ic = VadiSpline(data_x,lic_Vadi)
    else      : Vadi_ic = None
    # Return data
    return dMols, Vadi_cc, Vadi_ic, tuple_cc, tuple_ic, listV0