예제 #1
0
        prediction[:, :, 2] -= np.min(prediction[:, :, 2])

        anim_output = {'Reconstruction': prediction}

        input_keypoints = image_coordinates(input_keypoints[..., :2],
                                            w=cam['res_w'],
                                            h=cam['res_h'])

        from common.visualization import render_animation

        #Render the video
        render_animation(input_keypoints,
                         keypoints_metadata,
                         anim_output,
                         dataset.skeleton(),
                         dataset.fps(),
                         args.viz_bitrate,
                         cam['azimuth'],
                         args.viz_output,
                         limit=args.viz_limit,
                         downsample=args.viz_downsample,
                         size=args.viz_size,
                         input_video_path=args.viz_video,
                         viewport=(cam['res_w'], cam['res_h']),
                         input_video_skip=args.viz_skip)

#If not rendering
else:
    print('Evaluating...')
    all_actions = {}
    all_actions_by_subject = {}
예제 #2
0
                        subject][args.viz_camera]['orientation']
                    break
            prediction = camera_to_world(prediction, R=rot, t=0)
            # We don't have the trajectory, but at least we can rebase the height
            prediction[:, :, 2] -= np.min(prediction[:, :, 2])

        anim_output = {'Reconstruction': prediction}
        if ground_truth is not None and not args.viz_no_ground_truth:
            anim_output['Ground truth'] = ground_truth

        input_keypoints = image_coordinates(
            input_keypoints[..., :2], w=cam['res_w'], h=cam['res_h'])

        from common.visualization import render_animation
        render_animation(input_keypoints, keypoints_metadata, anim_output,
                         dataset.skeleton(), dataset.fps(
                         ), args.viz_bitrate, cam['azimuth'], args.viz_output,
                         limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
                         input_video_path=args.viz_video, viewport=(
                             cam['res_w'], cam['res_h']),
                         input_video_skip=args.viz_skip)

else:
    print('Evaluating...')
    all_actions = {}
    all_actions_by_subject = {}
    for subject in subjects_test:
        if subject not in all_actions_by_subject:
            all_actions_by_subject[subject] = {}

        for action in dataset[subject].keys():
            action_name = action.split(' ')[0]