import common.perceptron as nn import numpy as np import random import tensorflow as tf import sys model_file1 = sys.argv[1] layer1 = int(sys.argv[2]) model_file2 = sys.argv[3] layer2 = int(sys.argv[4]) b = bm.BoardManager() n1 = nn.Perceptron(layer1, 81, 81) n1.load(model_file1) n2 = nn.Perceptron(layer2, 81, 81) n2.load(model_file2) ns = [n1, n2] n_battle = int(sys.argv[5]) count = 0 #b.clear_data(data_file_d) #b.clear_data(data_file_l) wins = [0, 0]
import common.perceptron as nn import numpy as np import random import tensorflow as tf import sys model_file = sys.argv[2] data_file_d = sys.argv[3] data_file_l = sys.argv[4] layer = int(sys.argv[1]) b = bm.BoardManager() n = nn.Perceptron(layer, 81, 81) n.load(model_file) train_n = 10000 # number of train battle count = 0 #b.clear_data(data_file_d) #b.clear_data(data_file_l) while True: if count >= train_n: count = 0 n.train(data_file_d, data_file_l, 1) n.save(model_file) b.clear_data(data_file_d)
import common.board_manager as bm import common.perceptron as nn import sys import numpy as np import random model_file = sys.argv[2] data_file_d = sys.argv[3] data_file_l = sys.argv[4] layer = int(sys.argv[1]) b = bm.BoardManager() n = nn.Perceptron(layer, 81, 81) n.train(data_file_d, data_file_l, 1) n.save(model_file) n.load(model_file) n2 = nn.Perceptron(0, 81, 81) ns = [n, n2] count = 0 n_battle = int(sys.argv[5]) wins = [0, 0] while True: count += 1