예제 #1
0
 def __init__(self):
     # コンストラクタ
     self.model = Sequential()
     self.layout = self.Layout()
     self.layer = None # 層が追加されているか判定するための変数
예제 #2
0
def nn(x, t, batch_size, epochs, feature=None, validation=None):
    """
    簡単なニューラルネットワークのモデルを作成する関数

    Parameters
    ----------
    x : ndarray
        学習用データ
    t : ndarray
        教師データ
    batch_size : int
        バッチサイズ
    eopchs : int
        エポック数
    feature : int
        Feature Scalingの選択
    """       
    #-------------------------------
    # DataFeature
    #-------------------------------
    if feature != None:
        x = Datafeature(x, feature)
        t = Datafeature(t, feature)

    #-------------------------------
    # Validation
    #-------------------------------
    if validation != None:    # バリデーションが最初からセットされているとき
        x_val = validation[0]
        t_val = validation[1]
    else:
        x = __shuffle__(x)
        t = __shuffle__(t)
        x_val, x = __sorting__(x, 100)
        t_val, t = __sorting__(t, 100)

    # 学習曲線を可視化するコールバックを用意する
    higher_better_metrics = ['r2']
    visualize_cb = LearningVisualizationCallback(higher_better_metrics)
    callbacks = [
        visualize_cb,
    ]

    model = Sequential()
    model.add(Input(input_shape=x.shape[1]))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(t.shape[1],  activation='softmax'))
    #model.compile(loss='cross_entropy_error')
    model.add(Dense(t.shape[1], activation = 'liner'))
    model.compile(loss='mean_squared_error', metrics = ['r2', 'rsme'])

    #history=model.fit(x, t, batch_size=batch_size, epochs=epochs, validation=validation)
    history = model.fit(x, t, batch_size=batch_size,
                        epochs=epochs, validation=(x_val, t_val), callbacks=callbacks)

    # lossグラフ
    loss = history['loss_ave']
    val_loss = history['val_loss']

    nb_epoch = len(loss)
    plt.plot(range(nb_epoch), loss, marker = '.', label = 'loss')
    plt.plot(range(nb_epoch), val_loss, marker='.', label='val_loss')
    plt.legend(loc = 'best', fontsize = 10)
    plt.grid()
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()
예제 #3
0
class NeuralNet_APP:
    def __init__(self):
        # コンストラクタ
        self.model = Sequential()
        self.layout = self.Layout()
        self.layer = None # 層が追加されているか判定するための変数
        #self.main()
        
    """
    ----------------------
    NetWork
    ----------------------
    """
    def LayerAdd_click(self, layerName, Node, weight=None, bias=None, activation=None):
        """ NetWorkにレイヤを追加していく関数 """
        Node = int(Node)

        if layerName == 'input':
            self.model.add(Input(input_shape=Node))
        elif layerName == 'Dense':
            self.model.add(Dense(Node, activation, weight, bias))
        
        print(layerName + ':' + str(Node))
        return layerName

    def NetMake_click(self, loss, optimizer, metrics):
        """ 
        NetWorkに損失関数、評価関数、最適化アルゴリズムをセットし、
        モデルを構築する関数
        """
        metrics = [metrics]
        self.model.compile(loss, optimizer=optimizer, metrics=metrics)
        print('コンパイル完了')

    def Training_click(self, orgPath, batch_size, epochs, feature=None, valPath=None):
        orgLrn_Path = orgPath[0]
        orgTrg_Path = orgPath[1]

        #---------------
        # 型変換
        #---------------
        if batch_size != int:
            batch_size = int(batch_size)
        if epochs != int:
            epochs = int(epochs)
        #---------------------
        # データの読み込み
        #---------------------
        x = dataLoad(orgLrn_Path, float)
        t = dataLoad(orgTrg_Path, float)
        #-------------------------------
        # DataFeature
        #-------------------------------
        if feature != None:
            x = Datafeature(x, feature)
            t = Datafeature(t, feature)
        #-----------------------------
        # Validationデータの読み込み
        #-----------------------------
        if valPath != None:
            valRLN_Path = valPath[0]
            valTrg_Path = valPath[1]
            x_val = dataLoad(valRLN_Path, float)
            t_val = dataLoad(valTrg_Path, float)
            #-------------------------------
            # DataFeature
            #-------------------------------
            if feature != None:
                x_val = Datafeature(x_val, feature)
                t_val = Datafeature(t_val, feature)

                validation = (x_val, t_val)
        else:
            validation = None

        # 学習曲線を可視化するコールバックを用意する
        higher_better_metrics = ['r2']
        visualize_cb = LearningVisualizationCallback(higher_better_metrics)
        callbacks = [
            visualize_cb,
        ]

        self.model.fit(x=x, t=t, batch_size=batch_size, epochs=epochs, validation=validation, callbacks=callbacks)

    def Test_click(self, tstDataPath, feature):
        tstLrn_Path = tstDataPath[0]
        tstTrg_Path = tstDataPath[1]
        
        #---------------------
        # データの読み込み
        #---------------------
        x = dataLoad(tstLrn_Path, float)
        t = dataLoad(tstTrg_Path, float)  
        #-------------------------------
        # DataFeature
        #-------------------------------
        if feature != None:
            x = Datafeature(x, feature)
            t = Datafeature(t, feature)
        self.model.evaluate(x, t)

    def FlowChartPrint_click(self):
        xmin = -8
        xmax = 8
        ymin = 0
        ymax = 25
        dh = 0.7  # 行ごとの高さ
        A = []
        B = []
        for i in range(0, int(ymax//dh)+1):
            s = '{0:.1f}'.format(dh*i)
            A += [float(s)]
            B += [i]

        fig = plt.figure()
        ax1 = plt.subplot(111)
        ax1 = plt.gca()
        ax1.set_xlim([xmin, xmax])
        ax1.set_ylim([ymax, ymin])
        aspect = (abs(ymax-ymin))/(abs(xmax-xmin))*abs(ax1.get_xlim()
                                                       [1] - ax1.get_xlim()[0]) / abs(ax1.get_ylim()[1] - ax1.get_ylim()[0])

        ax1.set_aspect(aspect)

        ax1.tick_params(labelsize=6)
        ax1.xaxis.set_major_locator(MultipleLocator(1))
        ax1.yaxis.set_major_locator(MultipleLocator(dh))
        plt.yticks(A, B)
        plt.grid(which='both', lw=0.3, color='#cccccc', linestyle='-')

        # Store texts in list
        a = []
        ax = []
        ay = []
        i = 0
        iis = 3
        ii = iis+1
        wx = 10
        row = 1
        llw = 0.5
        fsize = 5  # fontsize
        title = 'model'

        # Draw title
        xs = 0
        ys = iis*dh-1.0*dh
        plt.text(xs, ys, title, rotation=0, ha='center',
                 va='center', fontsize=fsize, fontweight='bold')

        for key in self.model.sequential.keys():
            a = a+[key]
            # Store coordinats of texts in list
            ii += 1
            ys = ii*dh
            xs = 0
            ax = ax+[xs]
            ay = ay+[ys+0.5*dh]

            # Store coordinates of tbox shapes in list
            xs = -0.5*wx
            xe = 0.5*wx
            ye = ys + row*dh  # 行間

            # Draw box
            poly = Polygon(
                [(xs, ys), (xe, ys), (xe, ye), (xs, ye)],  # 左回りでプロット
                facecolor='#dddddd',
                edgecolor='#000000',
                lw=llw
            )
            ax1.add_patch(poly)

            # Draw text
            if ax[i] == 0:
                plt.text(ax[i], ay[i], a[i], rotation=0,
                         ha='center', va='center', fontsize=fsize)
            else:
                plt.text(ax[i], ay[i], a[i], rotation=0,
                         ha='left', va='center', fontsize=fsize)

            # Draw line
            ii += 1
            lx = [0, 0]
            ly = [ii*dh, (ii+1)*dh]
            plt.plot(lx, ly, 'k-', lw=0.5)
            i += 1

        plt.show()

    def Flow_click(self, flow_data):
        y = self.model.flow(flow_data)

        return y


    """
    ----------------------
    DataMake
    ----------------------
    """
    def DataMake_click(self, importDirPath, outputDirPath, org_FileName, lrn_FileName, tst_FileName, digit):
        """ Originalデータを学習用データと正解ラベルに分ける関数 """
        org_FileName = __filePath__(importDirPath, org_FileName)
        lrn_FileName = __filePath__(outputDirPath, lrn_FileName)
        tst_FileName = __filePath__(outputDirPath, tst_FileName)
        DataConv(org_FileName, lrn_FileName, col_range_end=2, digit=digit)
        DataConv(org_FileName, tst_FileName, col_range_first=3, col_range_end=6, digit=digit)


    """
    ----------------------
    GUI Layout
    ----------------------
    """
    def Layout(self):
        # ----- Column Definition ----- #
        Dir = [
            [sg.Text('Import Dir')],
            [sg.Input(size=(30, 1)), sg.FolderBrowse(key='-importDirPath-')],
            [sg.Text('Output Dir')],
            [sg.Input(size=(30, 1)), sg.FolderBrowse(key='-outputDirPath-')],
            [sg.Button('DataMake', key='-DataMake-')],
        ]

        convfunc = [
            [sg.Text('OrigiData')],
            [sg.InputText('data.csv', size=(13, 1), key='-orgDataFileName-')],
            [sg.Text('LearnData')],
            [sg.InputText('learn.csv', size=(13, 1), key='-lrnDataFileName-')],
            [sg.Text('TestData'),
             sg.Text('小数点以下の桁数')],
            [sg.InputText('test.csv', size=(13, 1), key='-tstDataFileName-'),
             sg.InputText('2', size=(5, 1), key='-Digit-')],
        ]

        dataConv = [
            [sg.Column(Dir), sg.Column(convfunc)],
        ]

        NetMake = [
            [sg.Text('層の種類          '), sg.Text('ユニット数')],
            [sg.InputCombo(('input', 'Dense'), size=(15, 1), key='-LayerName-'),
             sg.InputText('50', size=(5, 1), key='-Node-')],
            [sg.Text('重みの初期値')],
            [sg.InputCombo(('He', 'Xavier',), size=(
                15, 1), key='-weightInit-')],
            [sg.Text('閾値の初期値')],
            [sg.InputCombo(('ZEROS',), size=(15, 1), key='-biasInit-')],
            [sg.Text('活性化関数')],
            [sg.InputCombo(('relu', 'sigmoid', 'liner'), size=(15, 1), key='-activation-'),
             sg.Button('add', key='-LayerAdd-')],
            [sg.Text('損失関数')],
            [sg.InputCombo(('mean_squared_error',),
                           size=(20, 1), key='-loss-')],
            [sg.Text('最適化')],
            [sg.InputCombo(('sgd',
                            'momentum_sgd',
                            'nag',
                            'ada_grad',
                            'rmsprop',
                            'ada_delta',
                            'adam',), size=(20, 1), key='-optimizer-')],
            [sg.Text('評価関数')],
            [sg.InputCombo(('r2', 'rmse'), size=(15, 1), key='-metrics-'),
             sg.Button('NetMake', key='-NetMake-')],
        ]

        FlowChartPrint = [
            [sg.Button('FlowChart', key='-FlowChartPrint-')],
        ]

        NuralNet = [
            [sg.Text('学習用データ')],
            [sg.Input(size=(30, 1)), sg.FileBrowse(key='-orgLRN-')],
            [sg.Text('学習用ラベル')],
            [sg.Input(size=(30, 1)), sg.FileBrowse(key='-orgTrg-')],
            [sg.Text('Validation用データ')],
            [sg.Input(size=(30, 1)), sg.FileBrowse(key='-valRLN-')],
            [sg.Text('Validation用ラベル')],
            [sg.Input(size=(30, 1)), sg.FileBrowse(key='-valTrg-')],
            [sg.Radio('標準化', 'feature', size=(10, 1), key='-feature_0-'),
             sg.Radio('正規化', 'feature', size=(10, 1), key='-feature_1-'),
             sg.Radio('両方', 'feature', size=(10, 1),  key='-feature_2-')],
            [sg.Text('Batch Size'), sg.Text('epochs')],
            [sg.InputText('128', size=(10, 1), key='-Batch-'),
             sg.InputText('100', size=(10, 1), key='-epochs-'),
             sg.Button('Training', key='-TrainingRUN-')],
        ]

        NetEvaluate = [
            [sg.Text('テスト用データ')],
            [sg.Input(size=(30, 1)), sg.FileBrowse(key='-tstRLN-')],
            [sg.Text('テスト用ラベル')],
            [sg.Input(size=(30, 1)),
             sg.FileBrowse(key='-tstTrg-'),
             sg.Button('Test', key='-TestRUN-')],
        ]

        layout = [
            [sg.Frame('NetMake', NetMake),
             sg.Frame('NuralNet', NuralNet),
             sg.Column(FlowChartPrint)],
            [sg.Frame('DataConv', dataConv)],
            [sg.Quit()],
        ]

        return layout
    

    """
    ----------------------
    GUI EVENT
    ----------------------
    """
    def Event(self, event, values):
        print(event, values)
        #InLayer = None  # 層が追加されているか判定するための変数
        #---------------------------------
        # DataMake_click
        #---------------------------------
        if event == '-DataMake-':
            self.DataMake_click(importDirPath=values['-importDirPath-'],
                                  outputDirPath=values['-outputDirPath-'],
                                  org_FileName=values['-orgDataFileName-'],
                                  lrn_FileName=values['-lrnDataFileName-'],
                                  tst_FileName=values['-tstDataFileName-'],
                                  digit=values['-Digit-'])
        #---------------------------------
        # Networkの層を追加する。
        #---------------------------------
        elif event == '-LayerAdd-':
            self.layer = self.LayerAdd_click(layerName=values['-LayerName-'],
                                          Node=values['-Node-'],
                                          weight=values['-weightInit-'],
                                          bias=values['-biasInit-'],
                                          activation=values['-activation-'])
        elif event == '-NetMake-':
            if self.layer is None or self.layer in 'input':
                print('層もしくは隠れ層がセットされていません。')
                return
            self.NetMake_click(values['-loss-'],
                               values['-optimizer-'],
                               values['-metrics-'])
                #NetMake_click(values['-loss-'])
        #----------------------------
        # Trainig_click
        #----------------------------
        elif event == '-TrainingRUN-':
            if self.layer is None or self.layer in 'input':
                print('層もしくは隠れ層がセットされていません。')
                return
            #----------------------------
            # ラジオボタンの条件分岐
            #----------------------------
            if values['-feature_0-'] is True:
                feature = 0
            elif values['-feature_1-'] is True:
                feature = 1
            elif values['-feature_2-'] is True:
                feature = 2
            else:
                feature = None
            #----------------------------
            # Validationの条件分岐
            #----------------------------
            if (values['-valRLN-'] != '' and values['-valTrg-'] != ''):
                val = (values['-valRLN-'], values['-valTrg-'])
            else:
                val = None

            self.Training_click((values['-orgLRN-'], values['-orgTrg-']),
                                    values['-Batch-'], values['-epochs-'], feature, val)

        elif event == '-FlowChartPrint-':
            self.FlowChartPrint_click()


    def main(self):
        return sg.Window('NeuralNet', self.layout, default_element_size=(40, 1))
예제 #4
0
     sg.FileBrowse(key='-tstTrg-'),
     sg.Button('Test', key='-TestRUN-')],
]


layout = [
    [sg.Frame('NetMake', NetMake),
     sg.Frame('NuralNet', NuralNet), ],
    [sg.Frame('DataConv', dataConv)],
    [sg.Quit()],
]

window = sg.Window('NeuralNet', layout, default_element_size=(40, 1))

# コンストラクタ
model = Sequential()

while True:
    event, values = window.Read(timeout=10)
    if event is None or event == 'Quit':
        break
    #---------------------------------
    # DataMake_click
    #---------------------------------
    if event is '-DataMake-':
        DataMake_click(importDirPath=values['-importDirPath-'], 
                        outputDirPath=values['-outputDirPath-'], 
                        org_FileName=values['-orgDataFileName-'], 
                        lrn_FileName=values['-lrnDataFileName-'], 
                        tst_FileName=values['-tstDataFileName-'], 
                        digit=values['-Digit-'])
예제 #5
0
def nn(x, t, batch_size, epochs, feature=None, validation=None):
    """
    簡単なニューラルネットワークのモデルを作成する関数

    Parameters
    ----------
    x : ndarray
        学習用データ
    t : ndarray
        教師データ
    batch_size : int
        バッチサイズ
    eopchs : int
        エポック数
    feature : int
        Feature Scalingの選択
    """
    data = {}
    data['x'] = x
    data['t'] = t
    # データの仕分け
    #data['x'], data['t'], data['val'] = __sorting__(x)
    # データの前処理
    for i in data.keys():
        data[i] = __feature__(data[i], feature)  # 標準化と正規化
        data[i] = __shuffle__(data[i], 0)  # データシャッフル
    # データのシャッフル
    #x, t = __shuffle__(x, t, 0)
    #data['x'], data['t'] = __shuffle__(data['x'], data['t'], 0)

    model = Sequential()
    model.add(Input(input_shape=x.shape[1]))
    #model.add(Dense(50, activation='relu', weight_initializer='relu'))
    #model.add(Dense(50, activation='relu', weight_initializer='relu'))
    model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(t.shape[1],  activation='softmax'))
    #model.compile(loss='cross_entropy_error')
    model.add(Dense(t.shape[1], activation='liner'))
    model.compile(loss='mean_squared_error')

    #history=model.fit(x, t, batch_size=batch_size, epochs=epochs, validation=validation)
    history = model.fit(data['x'],
                        data['t'],
                        batch_size=batch_size,
                        epochs=epochs,
                        validation=validation)

    # lossグラフ
    loss = history['loss_ave']
    val_loss = history['val_loss']
    nb_epoch = len(loss)
    plt.plot(range(nb_epoch), loss, marker='.', label='loss')
    plt.plot(range(nb_epoch), val_loss, marker='.', label='val_loss')
    plt.legend(loc='best', fontsize=10)
    plt.grid()
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()
예제 #6
0
 def __init__(self):
     # コンストラクタ
     self.model = Sequential()
     self.main()
예제 #7
0
def nn(x, t, batch_size, epochs, feature=None, validation=None):
    """
    簡単なニューラルネットワークのモデルを作成する関数

    Parameters
    ----------
    x : ndarray
        学習用データ
    t : ndarray
        教師データ
    batch_size : int
        バッチサイズ
    eopchs : int
        エポック数
    feature : int
        Feature Scalingの選択
    """

    model = Sequential()
    model.add(Input(input_shape=x.shape[1]))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(t.shape[1],  activation='softmax'))
    #model.compile(loss='cross_entropy_error')
    model.add(Dense(t.shape[1], activation='liner'))
    model.compile(loss='mean_squared_error')

    #history=model.fit(x, t, batch_size=batch_size, epochs=epochs, validation=validation)
    history = model.fit(x,
                        t,
                        batch_size=batch_size,
                        epochs=epochs,
                        validation=validation)

    # lossグラフ
    loss = history['loss_ave']
    val_loss = history['val_loss']
    train_acc = history['train_acc']

    nb_epoch = len(loss)
    plt.plot(range(nb_epoch), loss, marker='.', label='loss')
    plt.plot(range(nb_epoch), val_loss, marker='.', label='val_loss')
    plt.plot(range(nb_epoch), train_acc, marker='.', label='train_acc')
    plt.legend(loc='best', fontsize=10)
    plt.grid()
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()
예제 #8
0
파일: nn.py 프로젝트: rurusasu/Python
def nn(x, t, batch_size, epochs, feature):
    """
    簡単なニューラルネットワークのモデルを作成する関数

    Parameters
    ----------
    x : ndarray
        学習用データ
    t : ndarray
        教師データ
    batch_size : int
        バッチサイズ
    eopchs : int
        エポック数
    feature : int
        Feature Scalingの選択
    """
    # 標準化
    if (feature == 0 or feature == 2):
        x = data_std(x)
        t = data_std(t)
    if (feature == 1 or feature == 2):
        x = data_nom(x)
        t = data_nom(t)

    model = Sequential()
    model.add(Input(input_shape=x.shape[1]))
    #model.add(Dense(50, activation='relu', weight_initializer='relu'))
    #model.add(Dense(50, activation='relu', weight_initializer='relu'))
    model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    model.add(Dense(t.shape[1], activation='liner'))
    model.compile(loss='mean_squared_error')

    history = model.fit(x, t, batch_size=batch_size, epochs=epochs)

    # lossグラフ
    loss = history['loss_ave']
    nb_epoch = len(loss)
    plt.plot(range(nb_epoch), loss, marker='.', label='loss')
    plt.legend(loc='best', fontsize=10)
    plt.grid()
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()