예제 #1
0
 def read_data_and_create_examples(self, example_type, cached_examples_file,
                                   input_file):
     if cached_examples_file.exists():
         logger.info("Loading examples from cached file %s",
                     cached_examples_file)
         examples = torch.load(cached_examples_file)
     else:
         # create examples
         df_dataset = pd.read_csv(input_file).fillna("")
         pbar = ProgressBar(n_total=len(df_dataset), desc='create examples')
         examples = []
         for i, row in df_dataset.iterrows():
             guid = '%s-%d' % (example_type, i)
             seq_id = row["id"]
             text_a = row["title"]
             text_b = row["content"]
             label = row["label"]
             label = int(label)
             example = InputExample(guid=guid,
                                    seq_id=seq_id,
                                    text_a=text_a,
                                    text_b=text_b,
                                    label=label)
             examples.append(example)
             pbar(step=i)
         logger.info("Saving examples into cached file %s",
                     cached_examples_file)
         torch.save(examples, cached_examples_file)
     return examples
 def create_examples(self, lines, example_type, cached_examples_file):
     '''
     Creates examples for data
     '''
     pbar = ProgressBar(n_total=len(lines), desc='create examples')
     if cached_examples_file.exists():
         logger.info("Loading examples from cached file %s",
                     cached_examples_file)
         examples = torch.load(cached_examples_file)
     else:
         examples = []
         for i, line in enumerate(lines):
             guid = '%s-%d' % (example_type, i)
             text_a = line[0]
             text_b = line[1]
             label = line[2]
             label = int(label)
             example = InputExample(guid=guid,
                                    text_a=text_a,
                                    text_b=text_b,
                                    label=label)
             examples.append(example)
             pbar(step=i)
         logger.info("Saving examples into cached file %s",
                     cached_examples_file)
         torch.save(examples, cached_examples_file)
     return examples
def evaluate(args, model, eval_dataloader, metrics):
    # Eval!
    logger.info("  Num examples = %d", len(eval_dataloader))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = AverageMeter()
    metrics.reset()
    preds = []
    targets = []
    pbar = ProgressBar(n_total=len(eval_dataloader), desc='Evaluating')
    for bid, batch in enumerate(eval_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss, logits = outputs[:2]
            eval_loss.update(loss.item(), n=batch[0].size()[0])
        preds.append(logits.cpu().detach())
        targets.append(inputs['labels'].cpu().detach())
        pbar(bid)
    preds = torch.cat(preds, dim=0).cpu().detach()
    targets = torch.cat(targets, dim=0).cpu().detach()
    metrics(preds, targets)
    eval_log = {"eval_acc": metrics.value(), 'eval_loss': eval_loss.avg}
    return eval_log
예제 #4
0
def is_any_photo_shared(folder):
    "Checks the files in the folder to decide the image shared before or not"
    logger.info("Checking for is any photo shared before")
    for filename in os.listdir(folder):
        logger.debug("Filename is: %s", filename)
        if is_shared(os.path.join(folder, filename)):
            return True
    return False
예제 #5
0
def is_shared(filepath):
    "Checks the file to decide the image shared before or not"
    for folder in os.listdir(SHARED):
        folder = os.path.join(SHARED, folder)
        logger.info("folders are: %s", folder)
        for filename in os.listdir(folder):
            filename = os.path.join(folder, filename)
            if is_similar(filepath, filename):
                return True
    return False
예제 #6
0
def predict(args, model, pred_dataloader, config):
    # Predict (without compute metrics)
    # args.predict_save_path = config['pred_dir'] / f'{args.pred_dir_name}'
    # args.predict_save_path.mkdir(exist_ok=True)

    logger.info("  Num examples = %d", len(pred_dataloader))
    logger.info("  Batch size = %d", args.eval_batch_size)
    seq_ids = []
    preds = []
    pbar = ProgressBar(n_total=len(pred_dataloader), desc='Predicting')
    for bid, batch in enumerate(pred_dataloader):
        model.eval()
        batch = tuple(
            t.to(args.device) if isinstance(t, torch.Tensor) else t
            for t in batch)
        seq_ids += list(batch[-1])
        with torch.no_grad():
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            inputs['token_type_ids'] = batch[2]
            ##############
            # writer = SummaryWriter(config["output_dir"])
            # ips = {k: v[[0], ...] for k, v in inputs.items()}
            # ops = model(**ips)
            # model_graph_inputs = (
            #     ips["input_ids"], ips["attention_mask"], ips["token_type_ids"], [1,2], [3,4], ips["labels"])
            # writer.add_graph(model, model_graph_inputs)
            # writer.close()
            ##############
            outputs = model(**inputs)
            loss, logits = outputs[:2]
        preds.append(logits.cpu().detach())
        pbar(bid)
    preds = torch.cat(preds, dim=0).cpu().detach()
    preds_label = torch.argmax(preds, dim=1)
    result_label = DataFrame(data={
        "id": Series(seq_ids),
        "label": Series(preds_label)
    })
    result_label.to_csv(config["predict_result"], index=False)

    preds_softmax = torch.softmax(preds, dim=1)
    result_softmax = DataFrame(
        data={
            "id": Series(seq_ids),
            "label_0": Series(preds_softmax[:, 0]),
            "label_1": Series(preds_softmax[:, 1]),
            "label_2": Series(preds_softmax[:, 2])
        })
    result_softmax.to_csv(config["predict_softmax"], index=False)

    return result_label
예제 #7
0
def main():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--arch", default='albert_xlarge', type=str)
    parser.add_argument("--arch", default='albert_large', type=str)
    parser.add_argument('--bert_dir',
                        default='pretrain/pytorch/albert_large_zh',
                        type=str)
    parser.add_argument('--albert_config_path',
                        default='configs/albert_config_large.json',
                        type=str)

    parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument(
        "--train_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--eval_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.1,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    # Fix bug: Config is wrong from base.py if it is not base
    config['bert_dir'] = args.bert_dir
    config['albert_config_path'] = args.albert_config_path

    args.model_save_path = config['checkpoint_dir'] / f'{args.arch}'
    args.model_save_path.mkdir(exist_ok=True)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log_dir'] / 'finetuning.log')
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = AlbertProcessor(vocab_path=config['albert_vocab_path'],
                                do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    bert_config = AlbertConfig.from_pretrained(str(
        config['albert_config_path']),
                                               share_type=args.share_type,
                                               num_labels=num_labels)

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        train_data = processor.get_train(config['data_dir'] / "train.txt")
        train_examples = processor.create_examples(
            lines=train_data,
            example_type='train',
            cached_examples_file=config['data_dir'] /
            f"cached_train_examples_{args.arch}")
        train_features = processor.create_features(
            examples=train_examples,
            max_seq_len=args.train_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_train_features_{}_{}".format(args.train_max_seq_len,
                                                 args.arch))
        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        valid_data = processor.get_dev(config['data_dir'] / "dev.txt")
        valid_examples = processor.create_examples(
            lines=valid_data,
            example_type='valid',
            cached_examples_file=config['data_dir'] /
            f"cached_valid_examples_{args.arch}")
        valid_features = processor.create_features(
            examples=valid_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_valid_features_{}_{}".format(args.eval_max_seq_len,
                                                 args.arch))
        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset,
                                      sampler=valid_sampler,
                                      batch_size=args.eval_batch_size)

        model = AlbertForSequenceClassification.from_pretrained(
            config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier(
            )  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, metrics, model)

    if args.do_test:
        test_data = processor.get_train(config['data_dir'] / "test.txt")
        test_examples = processor.create_examples(
            lines=test_data,
            example_type='test',
            cached_examples_file=config['data_dir'] /
            f"cached_test_examples_{args.arch}")
        test_features = processor.create_features(
            examples=test_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_test_features_{}_{}".format(args.eval_max_seq_len,
                                                args.arch))
        test_dataset = processor.create_dataset(test_features)
        test_sampler = SequentialSampler(test_dataset)
        test_dataloader = DataLoader(test_dataset,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)
        model = AlbertForSequenceClassification.from_pretrained(
            args.model_save_path, config=bert_config)
        model.to(args.device)
        test_log = evaluate(args, model, test_dataloader, metrics)
        print(test_log)
예제 #8
0
def train(args, train_dataloader, eval_dataloader, metrics, model):
    """ Train the model """

    t_total = len(train_dataloader
                  ) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    args.warmup_steps = t_total * args.warmup_proportion
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer,
                                     warmup_steps=args.warmup_steps,
                                     t_total=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    best_acc = 0
    model.zero_grad()
    seed_everything(args.seed)
    for epoch in range(int(args.num_train_epochs)):
        tr_loss = AverageMeter()
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)
            tr_loss.update(loss.item(), n=1)
            pbar(step, info={"loss": loss.item()})
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

        train_log = {'loss': tr_loss.avg}
        eval_log = evaluate(args, model, eval_dataloader, metrics)
        logs = dict(train_log, **eval_log)
        show_info = f'\nEpoch: {epoch} - ' + "-".join(
            [f' {key}: {value:.4f} ' for key, value in logs.items()])
        logger.info(show_info)

        if logs['eval_acc'] > best_acc:
            logger.info(
                f"\nEpoch {epoch}: eval_acc improved from {best_acc} to {logs['eval_acc']}"
            )
            logger.info("save model to disk.")
            best_acc = logs['eval_acc']
            print("Valid Entity Score: ")
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_file = args.model_save_path
            output_file.mkdir(exist_ok=True)
            output_model_file = output_file / WEIGHTS_NAME
            torch.save(model_to_save.state_dict(), output_model_file)
            output_config_file = output_file / CONFIG_NAME
            with open(str(output_config_file), 'w') as f:
                f.write(model_to_save.config.to_json_string())
예제 #9
0
def evaluate(args, model, eval_dataloader, metrics):
    # Eval!
    logger.info("  Number of examples = %d", len(eval_dataloader))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = AverageMeter()
    metrics.reset()
    preds = []
    targets = []
    pbar = ProgressBar(n_total=len(eval_dataloader), desc='Evaluating')
    # pdb.set_trace()
    # (Pdb) a
    # args = Namespace(adam_epsilon=1e-08, albert_config_path=
    # 'pretrain/pytorch/albert_base_zh/albert_config_base.json',
    # arch='albert_base', bert_dir='pretrain/pytorch/albert_base_zh',
    # device=device(type='cuda'), do_eval=False, do_lower_case=False,
    # do_test=True, do_train=False, eval_all_checkpoints=False,
    # eval_batch_size=16, eval_max_seq_len=64, evaluate_during_training=False,
    # fp16=False, fp16_opt_level='O1', gradient_accumulation_steps=1, learning_rate=2e-05,
    # local_rank=-1, max_grad_norm=5.0, model_save_path=PosixPath('outputs/checkpoints/albert_base'),
    # n_gpu=1, no_cuda=False, num_train_epochs=3.0, overwrite_cache=False,
    # overwrite_output_dir=False, seed=42, server_ip='', server_port='',
    # share_type='all', task_name='lcqmc', train_batch_size=32, train_max_seq_len=64,
    # warmup_proportion=0.1, weight_decay=0.1)
    #
    # model = AlbertForSequenceClassification(
    #   (bert): AlbertModel(
    #     (embeddings): AlbertEmbeddings(
    #       (word_embeddings): Embedding(21128, 128, padding_idx=0)
    #       (word_embeddings_2): Linear(in_features=128, out_features=768, bias=False)
    #       (position_embeddings): Embedding(512, 768)
    #       (token_type_embeddings): Embedding(2, 768)
    #       (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    #       (dropout): Dropout(p=0.0, inplace=False)
    #     )
    #     (encoder): AlbertEncoder(
    #       (layer_shared): AlbertLayer(
    #         (attention): AlbertAttention(
    #           (self): AlbertSelfAttention(
    #             (query): Linear(in_features=768, out_features=768, bias=True)
    #             (key): Linear(in_features=768, out_features=768, bias=True)
    #             (value): Linear(in_features=768, out_features=768, bias=True)
    #             (dropout): Dropout(p=0.0, inplace=False)
    #           )
    #           (output): AlbertSelfOutput(
    #             (dense): Linear(in_features=768, out_features=768, bias=True)
    #             (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    #             (dropout): Dropout(p=0.0, inplace=False)
    #           )
    #         )
    #         (intermediate): AlbertIntermediate(
    #           (dense): Linear(in_features=768, out_features=3072, bias=True)
    #         )
    #         (output): AlbertOutput(
    #           (dense): Linear(in_features=3072, out_features=768, bias=True)
    #           (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    #           (dropout): Dropout(p=0.0, inplace=False)
    #         )
    #       )
    #     )
    #     (pooler): AlbertPooler(
    #       (dense): Linear(in_features=768, out_features=768, bias=True)
    #       (activation): Tanh()
    #     )
    #   )
    #   (dropout): Dropout(p=0.2, inplace=False)
    #   (classifier): Linear(in_features=768, out_features=2, bias=True)
    # )
    # eval_dataloader = <torch.utils.data.dataloader.DataLoader object at 0x7f113f07d668>
    # metrics = <common.metrics.Accuracy object at 0x7f11a904fa90>

    for bid, batch in enumerate(eval_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'token_type_ids': batch[2],
                'labels': batch[3]
            }
            # inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss, logits = outputs[:2]
            eval_loss.update(loss.item(), n=batch[0].size()[0])
        preds.append(logits.cpu().detach())
        targets.append(inputs['labels'].cpu().detach())
        pbar(bid)
        # pdb.set_trace()
        # (Pdb) pp batch[0].size(), batch[1].size(), batch[2].size(), batch[3].size()
        # (torch.Size([16, 64]), torch.Size([16, 64]), torch.Size([16, 64]), torch.Size([16]))
        # (Pdb) inputs['input_ids'][0]
        # tensor([ 101, 6443, 3300, 4312,  676, 6821, 2476, 7770, 3926, 4638,  102, 6821,
        #         2476, 7770, 3926, 1745, 8024, 6443, 3300,  102,    0,    0,    0,    0,
        #            0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
        #            0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
        #            0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
        #            0,    0,    0,    0], device='cuda:0')
        # (Pdb) inputs['attention_mask'][0]
        # tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
        #         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        #         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')
        # (Pdb) inputs['token_type_ids'][0]
        # tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
        #         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        #         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')
        # (Pdb) inputs['labels']
        # tensor([0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1], device='cuda:0')

    preds = torch.cat(preds, dim=0).cpu().detach()
    targets = torch.cat(targets, dim=0).cpu().detach()
    metrics(preds, targets)
    eval_log = {"eval_acc": metrics.value(), 'eval_loss': eval_loss.avg}
    return eval_log
    def create_features(self, examples, max_seq_len, cached_features_file):
        '''
        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids:   0   0   0   0  0     0   0
        '''
        pbar = ProgressBar(n_total=len(examples), desc='create features')
        if cached_features_file.exists():
            logger.info("Loading features from cached file %s",
                        cached_features_file)
            features = torch.load(cached_features_file)
        else:
            features = []
            for ex_id, example in enumerate(examples):
                tokens_a = self.tokenizer.tokenize(example.text_a)
                tokens_b = None
                label_id = example.label

                if example.text_b:
                    tokens_b = self.tokenizer.tokenize(example.text_b)
                    # Modifies `tokens_a` and `tokens_b` in place so that the total
                    # length is less than the specified length.
                    # Account for [CLS], [SEP], [SEP] with "- 3"
                    self.truncate_seq_pair(tokens_a,
                                           tokens_b,
                                           max_length=max_seq_len - 3)
                else:
                    # Account for [CLS] and [SEP] with '-2'
                    if len(tokens_a) > max_seq_len - 2:
                        tokens_a = tokens_a[:max_seq_len - 2]
                tokens = ['[CLS]'] + tokens_a + ['[SEP]']
                segment_ids = [0] * len(tokens)
                if tokens_b:
                    tokens += tokens_b + ['[SEP]']
                    segment_ids += [1] * (len(tokens_b) + 1)

                input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
                input_mask = [1] * len(input_ids)
                padding = [0] * (max_seq_len - len(input_ids))
                input_len = len(input_ids)

                input_ids += padding
                input_mask += padding
                segment_ids += padding

                assert len(input_ids) == max_seq_len
                assert len(input_mask) == max_seq_len
                assert len(segment_ids) == max_seq_len

                if ex_id < 2:
                    logger.info("*** Example ***")
                    logger.info(f"guid: {example.guid}" % ())
                    logger.info(
                        f"tokens: {' '.join([str(x) for x in tokens])}")
                    logger.info(
                        f"input_ids: {' '.join([str(x) for x in input_ids])}")
                    logger.info(
                        f"input_mask: {' '.join([str(x) for x in input_mask])}"
                    )
                    logger.info(
                        f"segment_ids: {' '.join([str(x) for x in segment_ids])}"
                    )
                    logger.info(f"label id : {label_id}")

                feature = InputFeature(input_ids=input_ids,
                                       input_mask=input_mask,
                                       segment_ids=segment_ids,
                                       label_id=label_id,
                                       input_len=input_len)
                features.append(feature)
                pbar(step=ex_id)
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)
        return features
예제 #11
0
 def __init__(self,
              training_path,
              file_id,
              tokenizer,
              data_name,
              reduce_memory=False):
     self.tokenizer = tokenizer
     self.file_id = file_id
     data_file = training_path / f"{data_name}_file_{self.file_id}.json"
     metrics_file = training_path / f"{data_name}_file_{self.file_id}_metrics.json"
     assert data_file.is_file() and metrics_file.is_file()
     metrics = json.loads(metrics_file.read_text())
     num_samples = metrics['num_training_examples']
     seq_len = metrics['max_seq_len']
     self.temp_dir = None
     self.working_dir = None
     if reduce_memory:
         self.temp_dir = TemporaryDirectory()
         self.working_dir = Path(self.temp_dir.name)
         input_ids = np.memmap(filename=self.working_dir /
                               'input_ids.memmap',
                               mode='w+',
                               dtype=np.int32,
                               shape=(num_samples, seq_len))
         input_masks = np.memmap(filename=self.working_dir /
                                 'input_masks.memmap',
                                 shape=(num_samples, seq_len),
                                 mode='w+',
                                 dtype=np.bool)
         segment_ids = np.memmap(filename=self.working_dir /
                                 'segment_ids.memmap',
                                 shape=(num_samples, seq_len),
                                 mode='w+',
                                 dtype=np.bool)
         lm_label_ids = np.memmap(filename=self.working_dir /
                                  'lm_label_ids.memmap',
                                  shape=(num_samples, seq_len),
                                  mode='w+',
                                  dtype=np.int32)
         lm_label_ids[:] = -1
         is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap',
                              shape=(num_samples, ),
                              mode='w+',
                              dtype=np.bool)
     else:
         input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
         input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         lm_label_ids = np.full(shape=(num_samples, seq_len),
                                dtype=np.int32,
                                fill_value=-1)
         is_nexts = np.zeros(shape=(num_samples, ), dtype=np.bool)
     logger.info(f"Loading training examples for {str(data_file)}")
     with data_file.open() as f:
         for i, line in enumerate(f):
             line = line.strip()
             example = json.loads(line)
             features = convert_example_to_features(example, tokenizer,
                                                    seq_len)
             input_ids[i] = features.input_ids
             segment_ids[i] = features.segment_ids
             input_masks[i] = features.input_mask
             lm_label_ids[i] = features.lm_label_ids
             is_nexts[i] = features.is_next
     assert i == num_samples - 1  # Assert that the sample count metric was true
     logger.info("Loading complete!")
     self.num_samples = num_samples
     self.seq_len = seq_len
     self.input_ids = input_ids
     self.input_masks = input_masks
     self.segment_ids = segment_ids
     self.lm_label_ids = lm_label_ids
     self.is_nexts = is_nexts
예제 #12
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=200)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.00176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    args = parser.parse_args()

    pregenerated_data = config['data_dir'] / "corpus/train"
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, "
        f"share_type: {args.share_type}")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    seed_everything(args.seed)
    tokenizer = BertTokenizer(vocab_file=config['albert_vocab_path'])
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = BertConfig.from_pretrained(str(config['albert_config_path']),
                                             share_type=args.share_type)
    model = BertForPreTraining(config=bert_config)
    # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000')
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=args.warmup_steps,
                                        t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    mask_metric = LMAccuracy()
    sop_metric = LMAccuracy()
    tr_mask_acc = AverageMeter()
    tr_sop_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_mask_loss = AverageMeter()
    tr_sop_loss = AverageMeter()
    loss_fct = CrossEntropyLoss(ignore_index=-1)

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask)
                prediction_scores = outputs[0]
                seq_relationship_score = outputs[1]

                masked_lm_loss = loss_fct(
                    prediction_scores.view(-1, bert_config.vocab_size),
                    lm_label_ids.view(-1))
                next_sentence_loss = loss_fct(
                    seq_relationship_score.view(-1, 2), is_next.view(-1))
                loss = masked_lm_loss + next_sentence_loss

                mask_metric(logits=prediction_scores.view(
                    -1, bert_config.vocab_size),
                            target=lm_label_ids.view(-1))
                sop_metric(logits=seq_relationship_score.view(-1, 2),
                           target=is_next.view(-1))

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
                tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)
                tr_mask_loss.update(masked_lm_loss.item(), n=1)
                tr_sop_loss.update(next_sentence_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    lr_scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['mask_acc'] = tr_mask_acc.avg
                    train_logs['sop_acc'] = tr_sop_acc.avg
                    train_logs['mask_loss'] = tr_mask_loss.avg
                    train_logs['sop_loss'] = tr_sop_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_mask_acc.reset()
                    tr_sop_acc.reset()
                    tr_loss.reset()
                    tr_mask_loss.reset()
                    tr_sop_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = config[
                            'checkpoint_dir'] / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())

                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,  # 128 * 0.15
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)

    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=config['data_dir'] / 'vocab.txt',
                              do_lower_case=args.do_lower_case)

    if args.do_split:
        corpus_path = config['data_dir'] / "corpus/corpus.txt"
        split_save_path = config['data_dir'] / "corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    if args.do_data:
        data_path = config['data_dir'] / "corpus/train"
        files = sorted([
            f for f in data_path.parent.iterdir()
            if f.exists() and '.txt' in str(f)
        ])

        for idx in range(args.file_num):
            logger.info(f"pregenetate {args.data_name}_file_{idx}.json")
            save_filename = data_path / f"{args.data_name}_file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = create_training_instances(
                        input_file=file_path,
                        tokenizer=tokenizer,
                        max_seq_len=args.max_seq_len,
                        max_ngram=args.max_ngram,
                        short_seq_prob=args.short_seq_prob,
                        masked_lm_prob=args.masked_lm_prob,
                        max_predictions_per_seq=args.max_predictions_per_seq)
                    file_examples = [
                        json.dumps(instance) for instance in file_examples
                    ]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
def create_training_instances(input_file, tokenizer, max_seq_len,
                              short_seq_prob, max_ngram, masked_lm_prob,
                              max_predictions_per_seq):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]
    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    f = open(input_file, 'r')
    lines = f.readlines()
    pbar = ProgressBar(n_total=len(lines), desc='read data')
    for line_cnt, line in enumerate(lines):
        line = line.strip()
        # Empty lines are used as document delimiters
        if not line:
            all_documents.append([])
        tokens = tokenizer.tokenize(line)
        if tokens:
            all_documents[-1].append(tokens)
        pbar(step=line_cnt)
    print(' ')
    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    random.shuffle(all_documents)

    vocab_words = list(tokenizer.vocab.keys())
    instances = []
    pbar = ProgressBar(n_total=len(all_documents), desc='create instances')
    for document_index in range(len(all_documents)):
        instances.extend(
            create_instances_from_document(all_documents, document_index,
                                           max_seq_len, short_seq_prob,
                                           max_ngram, masked_lm_prob,
                                           max_predictions_per_seq,
                                           vocab_words))
        pbar(step=document_index)
    print(' ')
    ex_idx = 0
    while ex_idx < 5:
        instance = instances[ex_idx]
        logger.info("-------------------------Example-----------------------")
        logger.info(f"id: {ex_idx}")
        logger.info(
            f"tokens: {' '.join([str(x) for x in instance['tokens']])}")
        logger.info(
            f"masked_lm_labels: {' '.join([str(x) for x in instance['masked_lm_labels']])}"
        )
        logger.info(
            f"segment_ids: {' '.join([str(x) for x in instance['segment_ids']])}"
        )
        logger.info(
            f"masked_lm_positions: {' '.join([str(x) for x in instance['masked_lm_positions']])}"
        )
        logger.info(f"is_random_next : {instance['is_random_next']}")
        ex_idx += 1
    random.shuffle(instances)
    return instances
예제 #15
0
def main():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--arch", default='albert_xlarge', type=str)
    # parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument(
        "--train_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--eval_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    # parser.add_argument("--evaluate_during_training", action='store_true',
    #                     help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.1,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")

    parser.add_argument('--train_data_num',
                        type=int,
                        default=None,
                        help="Use a small number to test the full code")
    parser.add_argument('--eval_data_num',
                        type=int,
                        default=None,
                        help="Use a small number to test the full code")
    parser.add_argument('--do_pred',
                        action='store_true',
                        help="Predict a dataset and do not evaluate accuracy")
    parser.add_argument(
        '--model_size',
        type=str,
        default='large',
        help=
        "Which albert size to choose, could be: base, large, xlarge, xxlarge")
    parser.add_argument('--commit',
                        type=str,
                        default='',
                        help="Current experiment's commit")
    parser.add_argument(
        '--load_checkpoints_dir',
        type=str,
        default="",
        help=
        "Whether to use checkpoints to load model. If not given checkpoints, use un-fineturned albert"
    )

    args = parser.parse_args()

    config = create_config(commit=args.commit,
                           model_size=args.model_size,
                           load_checkpoints_dir=args.load_checkpoints_dir)
    # args.model_save_path = config['checkpoints_dir']
    # args.model_save_path.mkdir()
    # os.makedirs(config["checkpoints_dir"])
    os.makedirs(config["output_dir"])

    with open(config["args"], "w") as fa, open(config["config"], "w") as fc:
        json.dump(vars(args), fa, indent=4)
        json.dump({k: str(v) for k, v in config.items()}, fc, indent=4)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log'])
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = BertProcessor(vocab_path=config['albert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    bert_config = BertConfig.from_pretrained(str(config['bert_dir'] /
                                                 'config.json'),
                                             share_type=args.share_type,
                                             num_labels=num_labels)

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        # train_data = processor.get_train(config['data_dir'] / "train.tsv")
        # train_examples = processor.create_examples(lines=train_data, example_type='train',
        #                                            cached_examples_file=config[
        #                                                                     'data_dir'] / f"cached_train_examples_{args.arch}")
        # todo: 划分数据集,合成train.csv, eval.csv, test. csv
        train_examples = processor.read_data_and_create_examples(
            example_type='train',
            cached_examples_file=config['data_dir'] /
            f"cached_train_examples_{args.model_size}",
            input_file=config['data_dir'] / "train.csv")
        train_examples = train_examples[:args.
                                        train_data_num] if args.train_data_num is not None else train_examples

        train_features = processor.create_features(
            examples=train_examples,
            max_seq_len=args.train_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_train_features_{}_{}".format(args.train_max_seq_len,
                                                 args.model_size))
        train_features = train_features[:args.
                                        train_data_num] if args.train_data_num is not None else train_features

        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        train_sampler_eval = SequentialSampler(train_dataset)
        train_dataloader_eval = DataLoader(train_dataset,
                                           sampler=train_sampler_eval,
                                           batch_size=args.eval_batch_size)

        # valid_data = processor.get_dev(config['data_dir'] / "dev.tsv")
        # valid_examples = processor.create_examples(lines=valid_data, example_type='valid',
        #                                            cached_examples_file=config[
        #                                                                     'data_dir'] / f"cached_valid_examples_{args.arch}")
        valid_examples = processor.read_data_and_create_examples(
            example_type='valid',
            cached_examples_file=config['data_dir'] /
            f"cached_valid_examples_{args.model_size}",
            input_file=config['data_dir'] / "valid.csv")
        valid_examples = valid_examples[:args.
                                        eval_data_num] if args.eval_data_num is not None else valid_examples

        valid_features = processor.create_features(
            examples=valid_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_valid_features_{}_{}".format(args.eval_max_seq_len,
                                                 args.model_size))
        valid_features = valid_features[:args.
                                        eval_data_num] if args.eval_data_num is not None else valid_features

        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset,
                                      sampler=valid_sampler,
                                      batch_size=args.eval_batch_size)

        model = BertForSequenceClassification.from_pretrained(
            config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier(
            )  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, train_dataloader_eval,
              metrics, model, config)
        # 打上戳表示训练完成
        config["success_train"].open("w").write("Train Success!!")

    # if args.do_test:
    #     model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config)
    #     test_data = processor.get_train(config['data_dir'] / "test.tsv")
    #     test_examples = processor.create_examples(lines=test_data,
    #                                               example_type='test',
    #                                               cached_examples_file=config[
    #                                                                        'data_dir'] / f"cached_test_examples_{args.arch}")
    #     test_features = processor.create_features(examples=test_examples,
    #                                               max_seq_len=args.eval_max_seq_len,
    #                                               cached_features_file=config[
    #                                                                        'data_dir'] / "cached_test_features_{}_{}".format(
    #                                                   args.eval_max_seq_len, args.arch
    #                                               ))
    #     test_dataset = processor.create_dataset(test_features)
    #     test_sampler = SequentialSampler(test_dataset)
    #     test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size)
    #     # model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config)
    #     model.to(args.device)
    #     test_log = evaluate(args, model, test_dataloader, metrics)
    #     print(test_log)

    if args.do_pred:
        pred_examples = processor.read_data_and_create_examples(
            example_type='predict',
            cached_examples_file=config['data_dir'] /
            f"cached_pred_examples_{args.model_size}",
            input_file=config['data_dir'] / "pred.csv")
        pred_examples = pred_examples[:args.
                                      eval_data_num] if args.eval_data_num is not None else pred_examples

        pred_features = processor.create_features(
            examples=pred_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_pred_features_{}_{}".format(args.eval_max_seq_len,
                                                args.model_size))
        pred_features = pred_features[:args.
                                      eval_data_num] if args.eval_data_num is not None else pred_features
        pred_dataset = processor.create_dataset(pred_features)
        pred_sampler = SequentialSampler(pred_dataset)
        pred_dataloader = DataLoader(pred_dataset,
                                     sampler=pred_sampler,
                                     batch_size=args.eval_batch_size)
        param_dir = config['checkpoints_dir'] if (config["checkpoints_dir"] / "pytorch_model.bin").exists() \
            else config['bert_dir']
        model = BertForSequenceClassification.from_pretrained(
            param_dir, config=bert_config)
        model.to(args.device)
        # todo
        predict(args, model, pred_dataloader, config)
        # 打上戳表示预测完成
        config["success_predict"].open("w").write("Predict Success!!")
    config["output_dir"].rename(config["output_dir"].parent /
                                ("success-" + config["output_dir"].name))
예제 #16
0
    def create_features(self, examples, max_seq_len, cached_features_file):
        '''
        # The convention in ALBERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids:   0   0   0   0  0     0   0
        '''
        pbar = ProgressBar(n_total=len(examples), desc='create features')
        # pdb.set_trace()
        # cached_features_file = PosixPath('dataset/lcqmc/cached_test_features_64_albert_base')
        if cached_features_file.exists():
            logger.info("Loading features from cached file %s",
                        cached_features_file)
            features = torch.load(cached_features_file)
        else:
            features = []
            for ex_id, example in enumerate(examples):
                tokens_a = self.tokenizer.tokenize(example.text_a)
                tokens_b = None
                label_id = example.label

                if example.text_b:
                    tokens_b = self.tokenizer.tokenize(example.text_b)
                    # Modifies `tokens_a` and `tokens_b` in place so that the total
                    # length is less than the specified length.
                    # Account for [CLS], [SEP], [SEP] with "- 3"
                    self.truncate_seq_pair(tokens_a,
                                           tokens_b,
                                           max_length=max_seq_len - 3)
                else:
                    # Account for [CLS] and [SEP] with '-2'
                    if len(tokens_a) > max_seq_len - 2:
                        tokens_a = tokens_a[:max_seq_len - 2]
                tokens = ['[CLS]'] + tokens_a + ['[SEP]']
                segment_ids = [0] * len(tokens)
                if tokens_b:
                    tokens += tokens_b + ['[SEP]']
                    segment_ids += [1] * (len(tokens_b) + 1)

                input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
                # pdb.set_trace()
                # (Pdb) pp example.text_a, example.text_b, example.label
                # ('谁有狂三这张高清的', '这张高清图,谁有', 0)
                # (Pdb) pp tokens_a, tokens_b
                # (['谁', '有', '狂', '三', '这', '张', '高', '清', '的'],
                #  ['这', '张', '高', '清', '图', ',', '谁', '有'])
                # (Pdb) input_ids
                # [101, 6443, 3300, 4312, 676, 6821, 2476, 7770, 3926, 4638, 102,
                #  6821, 2476, 7770, 3926, 1745, 8024, 6443, 3300, 102]

                input_mask = [1] * len(input_ids)
                padding = [0] * (max_seq_len - len(input_ids))
                input_len = len(input_ids)

                input_ids += padding
                input_mask += padding
                segment_ids += padding

                assert len(input_ids) == max_seq_len
                assert len(input_mask) == max_seq_len
                assert len(segment_ids) == max_seq_len

                if ex_id < 2:
                    logger.info("*** Example ***")
                    logger.info(f"guid: {example.guid}" % ())
                    logger.info(
                        f"tokens: {' '.join([str(x) for x in tokens])}")
                    logger.info(
                        f"input_ids: {' '.join([str(x) for x in input_ids])}")
                    logger.info(
                        f"input_mask: {' '.join([str(x) for x in input_mask])}"
                    )
                    logger.info(
                        f"segment_ids: {' '.join([str(x) for x in segment_ids])}"
                    )
                    logger.info(f"label id : {label_id}")

                feature = InputFeature(input_ids=input_ids,
                                       input_mask=input_mask,
                                       segment_ids=segment_ids,
                                       label_id=label_id,
                                       input_len=input_len)
                features.append(feature)
                pbar(step=ex_id)
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)
        return features