예제 #1
0
def callback(ch, method, properties, body):
    data = json.loads(body)
    # We need:
    # - name: name of the current sheet
    # - partials: file names of the additional MEI files (including extension) (list).
    # These "partial" MEIs need to be in the "whole" folder of the sheet already, just like the skeleton.mei
    sheet_name = data['name']
    partial_file_names = data['partials']

    # Get sheet id (for status queue)
    sheet_id = str(db[cfg.col_sheet].find_one({"name": sheet_name})["_id"])

    whole_dir = fsm.get_sheet_whole_directory(sheet_name)
    skeleton_path = whole_dir / 'aligned.mei'
    partial_paths = [whole_dir / partial for partial in partial_file_names]

    # skeleton always has 1 section which just contains the measures and some additional tags
    skeleton_document = xml.parse(str(skeleton_path)).documentElement
    skeleton_section = skeleton_document.getElementsByTagName("section")[0]
    skeleton_section_xml = tt.purge_non_element_nodes(skeleton_section).toxml()
    partial_sections_xml = []
    for partial_path in partial_paths:
        if partial_path.is_file():
            partial = xml.parse(str(partial_path))
            # We have to extract the measures and put them under a "fake" section root to get a similar structure as the skeleton
            partial = tt.replace_child_nodes(
                tt.create_element_node("section"),
                partial.getElementsByTagName("measure"))
            partial = tt.purge_non_element_nodes(partial)
            partial_sections_xml.append(partial.toxml())

    # Perform the alignments and node picking
    aligned_trees = ta.align_trees_multiple([skeleton_section_xml] +
                                            partial_sections_xml)
    final_section_tree, _ = ta.build_consensus_tree(
        aligned_trees, consensus_method=ta.consensus_bnd_enrich_skeleton)

    # The final tree only aligned the section with measures, so we need to put the contents of that section back now
    tt.replace_child_nodes(skeleton_section, final_section_tree.childNodes)

    # Write the final tree to a file
    with open(whole_dir / 'aligned.mei', 'w') as aligned_mei_file:
        # We also purge everything that is not an element, to keep the tree clean and easily output a prettified XML file
        aligned_mei_file.write(
            tt.purge_non_element_nodes(skeleton_document).toprettyxml())

    # Update status
    status_update_msg = {
        '_id': sheet_id,
        'module': 'aligner',
        'status': 'complete',
        'name': sheet_name
    }

    global channel
    channel.queue_declare(queue=cfg.mq_omr_planner_status)
    channel.basic_publish(exchange="",
                          routing_key=cfg.mq_omr_planner_status,
                          body=json.dumps(status_update_msg))
예제 #2
0
def populate_payload_xml(score, tree, task):
    task_type_name = task["type"]
    task_step_name = task["step"]
    measures = tree.getElementsByTagName("measure")
    first_measure_index = measures[0].getAttribute("n")

    # Scoredefs
    if task_type_name == "0_fix_scoredef" and scoredef_chance > rnd.random():
        node = tt.create_element_node(
            "scoreDef", {
                "key.sig": rnd.choice(key_sigs),
                "key.mode": rnd.choice(key_modes),
                "crmp_id": str(uuid.uuid4())
            })
        print(
            f"  Putting scoreDef {node.toxml()} before measure n={first_measure_index}"
        )
        tree.insertBefore(node, measures[0]).parentNode

    # Clef detection
    elif task_type_name == "1_detect_clefs" and task_step_name == "edit" and clef_chance > rnd.random(
    ):
        node = tt.create_element_node("clef", {"shape": "G", "line": "2"})
        staff = tree.getElementsByTagName("staff")[0]
        first_staff_index = staff.getAttribute('n')
        print(
            f"  Putting clef {node.toxml()} in measure n={first_measure_index}, staff n={first_staff_index}"
        )

        for layer in staff.getElementsByTagName("layer"):
            layer.appendChild(node.cloneNode(deep=True))
            break

    # Note editing
    elif task_type_name == "2_add_notes" and task_step_name == "edit":
        staff = tree.getElementsByTagName("staff")[0]
        staff_index = staff.getAttribute('n')
        for layer in staff.getElementsByTagName("layer"):
            for i in [_ for _ in range(4) if note_chance > rnd.random()]:
                note_attr = {
                    "dur": rnd.choice(note_dur),
                    "oct": rnd.choice(note_oct),
                    "pname": rnd.choice(note_pname)
                }
                node = tt.create_element_node("note", note_attr)
                print(
                    f"  Putting note {node.toxml()} in measure n={first_measure_index}, staff n={staff_index}"
                )
                layer.appendChild(node.cloneNode(deep=True))

    return tt.purge_non_element_nodes(tree).toxml()
예제 #3
0
    def to_db_dict(self):
        """
        Get a dictionary representation of the object for storage in the database.
        """

        measures = []
        for measure in self.measures:
            staffs = [staff._asdict() for staff in measure.staffs]
            measures.append(
                Measure(staffs, measure.index, measure.xml, measure.context,
                        measure.score_def_before_measure)._asdict())

        return {
            "name": self.name,
            "measures": measures,
            "context": tt.purge_non_element_nodes(self.context).toprettyxml()
        }
def callback(ch, method, properties, body):
    data = json.loads(body)
    sheet_name = data['name']
    task_id = data['task_id']

    client = MongoClient(cfg.mongodb_address.ip, cfg.mongodb_address.port)
    db = client[cfg.db_name]

    # Get MEI file and measures
    mei_path = fsm.get_sheet_whole_directory(sheet_name) / "aligned.mei"
    mei_xml_tree = xml.parse(str(mei_path))
    # mei_measures = mei_xml.getElementsByTagName("measure")

    # Obtain corresponding task and slice
    task = db[cfg.col_task].find_one({"_id": ObjectId(task_id)})
    # measure_staff_slice = db[cfg.col_slice].find_one({"_id" : ObjectId(task["slice_id"])})
    # slice_measures = mei_measures[measure_staff_slice["start"]: measure_staff_slice["end"]]

    # Get aggregated XML
    aggregated_result = db[cfg.col_aggregated_result].find_one({
        "task_id":
        task_id,
        "step":
        task["step"]
    })

    if aggregated_result:
        aggregated_xml = aggregated_result["result"]

        # Temporary solution: give the slice somewhat more context by inserting only the header of the previous measure into it
        tree = xml.parseString(aggregated_xml).documentElement
        index = int(tree.getElementsByTagName("measure")[0].getAttribute(
            "n")) - 1  # n-index is shifted up by 1
        if index > 0:
            measure = mei_xml_tree.getElementsByTagName("measure")[
                index - 1].cloneNode(deep=True)  # get the previous measure
            measure.childNodes = []
            tree.insertBefore(measure, tree.childNodes[0])
            aggregated_xml = tree.toxml()

        # Perform combination with original MEI via tree aligner
        mei_section = mei_xml_tree.getElementsByTagName("section")[0]
        mei_section_xml = mei_section.toxml()
        aligned_trees = ta.align_trees_multiple(
            [mei_section_xml, aggregated_xml],
            distance_function=ta.node_distance_anchored)
        final_section_tree, _ = ta.build_consensus_tree(
            aligned_trees, consensus_method=ta.consensus_bnd_override_inner)
        tt.replace_child_nodes(mei_section, final_section_tree.childNodes)

        # Write MEI file
        with open(str(mei_path), 'w') as mei_file:
            mei_file.write(
                tt.purge_non_element_nodes(
                    mei_xml_tree.documentElement).toprettyxml())

        status_update_msg = {
            '_id': task_id,
            'module': 'score_rebuilder',
            'status': 'complete'
        }
    else:
        print(
            f"Aggregated result for task with id {task_id} at step {task['step']} did not exist!"
        )
        status_update_msg = {
            '_id': task_id,
            'module': 'score_rebuilder',
            'status': 'failed'
        }

    global channel
    channel.queue_declare(queue=cfg.mq_task_scheduler_status)
    channel.basic_publish(exchange="",
                          routing_key=cfg.mq_task_scheduler_status,
                          body=json.dumps(status_update_msg))
예제 #5
0
def align_trees_multiple(trees,
                         distance_function=node_distance,
                         gap_penalty=GAP_PENALTY,
                         verbose=False):
    # If we just have one tree, don't do anything fancy and just return that one
    if len(trees) == 1:
        return [tt.purge_non_element_nodes(xml.parseString(trees[0]))]

    # Create all distinct xml pairs
    pairs = {}
    for i in range(len(trees)):
        for j in range(i + 1, len(trees)):
            a = tt.purge_non_element_nodes(xml.parseString(trees[i]))
            b = tt.purge_non_element_nodes(xml.parseString(trees[j]))
            pairs[(i, j)] = (a, b)

    # Perform pairwise alignments
    distances = np.full((len(trees), len(trees)), np.inf)
    for i, j in pairs:
        a, b = pairs[i, j]
        distances[i, j] = align_trees_pairwise(
            a, b, distance_function=distance_function, gap_penalty=gap_penalty)

    distance_bins = [0] * len(trees)
    for i, j in pairs:
        distance_bins[i] += distances[i, j]
        distance_bins[j] += distances[i, j]

    # Tree with the smallest overall distance will be a good candidate
    main_tree_index = np.argmin(distance_bins)

    # Use the pairwise alignments with a heuristic to come up with a multiple alignment solution
    mas = []
    candidate_pairs = sorted([(i, j)
                              for i, j in pairs if main_tree_index in (i, j)],
                             key=lambda t: distances[t[0], t[1]])
    closest_pair_index = candidate_pairs[0]
    closest_pair = pairs[closest_pair_index]
    mas.append(closest_pair[closest_pair_index.index(
        main_tree_index)])  # The closest tree
    mas.append(closest_pair[not closest_pair_index.index(main_tree_index)]
               )  # The "other" tree
    for pair_index in candidate_pairs[1:]:
        pair = pairs[pair_index]
        main_tree = pair[pair_index.index(main_tree_index)]
        cand_tree = pair[not pair_index.index(main_tree_index)]

        if verbose:
            print(f"ITERATION {candidate_pairs.index(pair_index)}:")
            print("===MAIN:")
            print(main_tree.toprettyxml())
            print("===CAND:")
            print(cand_tree.toprettyxml())
            print()

        # Copy the gaps
        for tree in mas:
            copy_gaps(main_tree, tree)

        mas.append(cand_tree)

        if verbose:
            print("===RESULT SO FAR:")
            for tree in mas:
                print(tree.toprettyxml())
                print("============")

            print()
            print()
            print()
            print("------------------------------------------------")

    if verbose:
        print("===FINAL RESULTS:")
        for index, tree in enumerate(mas):
            print(f"TREE AT INDEX {index}:")
            print(tree.toprettyxml())
            print("============")

    return mas
def callback(ch, method, properties, body):
    data = json.loads(body)
    sheet_name = data['name']
    post_processing_steps = data["steps"]
    task_id = data['task_id']

    # Get MEI file
    mei_path = fsm.get_sheet_whole_directory(sheet_name) / "aligned.mei"
    mei_xml_tree = tt.purge_non_element_nodes(xml.parse(str(mei_path)))
    mei_section = mei_xml_tree.getElementsByTagName("section")[0]

    if "clef" in post_processing_steps:
        print(f"Performing clef post-processing for sheet {sheet_name}")
        for layer in mei_xml_tree.getElementsByTagName("layer"):
            element = layer.firstChild

            if element != None and element.tagName=="clef":
                staff = layer.parentNode
                measure = staff.parentNode

                clef_line  = element.getAttribute("line")
                clef_shape = element.getAttribute("shape")
                layer.removeChild(element)

                prev = measure.previousSibling
                scoreDef = None

                while prev:
                    if prev.tagName == "measure":
                        break
                    if prev.tagName == "scoreDef":
                        scoreDef = prev
                        break
                    prev = prev.previousSibling

                # TODO: actually generalize this code
                if not scoreDef:
                    scoreDef = tt.create_element_node("scoreDef")
                    mei_section.insertBefore(scoreDef, measure)

                staffGrp = tt.first_or_none(scoreDef, "staffGrp")
                if not staffGrp:
                    staffGrp = tt.create_element_node("staffGrp")
                    scoreDef.appendChild(staffGrp)

                staffDef = tt.first_or_none(staffGrp, "staffDef", lambda e: e.getAttribute("n") == staff.getAttribute("n"))
                if not staffDef:
                    staffDef = tt.create_element_node("staffDef", {"n": staff.getAttribute("n")})
                    staffGrp.appendChild(staffDef)

                staffDef.setAttribute("clef.line", clef_line)
                staffDef.setAttribute("clef.shape", clef_shape)

    # Write MEI file if there were changes
    if post_processing_steps:
        with open(str(mei_path), 'w') as mei_file:
            mei_file.write(tt.purge_non_element_nodes(mei_xml_tree.documentElement).toprettyxml())

    status_update_msg = {
        '_id': task_id,
        'module': 'post_processing',
        'status': 'complete'
    }

    global channel
    channel.queue_declare(queue=cfg.mq_task_scheduler_status)
    channel.basic_publish(exchange="", routing_key=cfg.mq_task_scheduler_status, body=json.dumps(status_update_msg))