def _init_node_parm(self, key): """ Init parameter from workflow_data_frame :return: """ try: wf_data_frame = WorkFlowDataFrame(key) self.type = wf_data_frame.object_type self.data_sql_stmt = wf_data_frame.sql_stmt self.data_src_path = utils.get_source_path(self.net_id, self.net_ver, self.node_id) #xgboost train eval all together self.data_src_eval_path = utils.get_source_path( self.net_id, self.net_ver, 'evaldata') self.data_src_type = wf_data_frame.src_type self.data_server_type = wf_data_frame.src_server self.data_preprocess_type = wf_data_frame.step_preprocess # xgboost train eval all together self.data_store_path = utils.get_store_path( self.net_id, self.net_ver, self.node_id) self.data_store_eval_path = utils.get_store_path( self.net_id, self.net_ver, 'evaldata') self.sent_max_len = wf_data_frame.max_sentence_len self.multi_node_flag = wf_data_frame.multi_node_flag self.drop_duplicate = wf_data_frame.drop_duplicate self.combine_label_list = list() except Exception as e: raise Exception("WorkFlowDataFrame parms are not set " + str(e))
def _init_train_parm(self, conf_data): # get initial value self.conf_data = conf_data self.cls_pool = conf_data["cls_pool"] self.nn_id = conf_data["nn_id"] self.wf_ver = conf_data["wf_ver"] self.node_id = conf_data["node_id"] graph = NNCommonManager().get_nn_node_name(conf_data["nn_id"]) for net in graph: if net['fields']['graph_node'] == 'netconf_node': self.netconf_node = net['fields']['graph_node_name'] if net['fields']['graph_node'] == 'netconf_feed': self.train_feed_name = self.nn_id + "_" + self.wf_ver + "_" + net['fields']['graph_node_name'] if net['fields']['graph_node'] == 'eval_feed': self.eval_feed_name = self.nn_id + "_" + self.wf_ver + "_" + net['fields']['graph_node_name'] self.feed_node = self.get_prev_node() #key = conf_data. wf_net_conf = WorkFlowNetConfXgboost(self.node_id ) self.conf = wf_net_conf.conf self.data_store_path = utils.get_store_path(self.net_id, self.net_ver, "data_node") self.data_store_eval_path = utils.get_store_path(self.net_id, self.net_ver, 'evaldata') self.model_path =self.conf.get('model_path') self.model_type = self.conf.get('model_type') print("")
def _init_value(self): ''' Residual Network Init Value :return: ''' self.file_end = '.bin' self.train_return_data = {} self.data_store_path = utils.get_store_path(self.net_id, self.net_ver, "data_node") self.data_store_eval_path = utils.get_store_path(self.net_id, self.net_ver, 'evaldata') self.model_path =self.conf.get('model_path') self.model_type = self.conf.get('model_type')
def put_step_store(self, src, form, nnid, wfver, node, input_data): """ putter for store :param obj: config data from view :return:boolean """ try: store_path = utils.get_store_path(nnid, wfver, node) obj = models.NN_WF_NODE_INFO.objects.get(nn_wf_node_id=str(nnid) + "_" + str(wfver) + "_" + str(node)) config_data = getattr(obj, 'node_config_data') config_data['store_path'] = utils.get_store_path(nnid, wfver, node) setattr(obj, 'node_config_data', config_data) obj.save() if (os.path.exists(store_path) == False): os.makedirs(store_path, exist_ok=True) return config_data['store_path'] except Exception as e: raise Exception(e)
def _init_node_parm(self, key): """ Init parameter from workflow_data_frame :return: """ try : wf_data_frame = WorkFlowDataFrame(key) self.type = wf_data_frame.object_type self.data_sql_stmt = wf_data_frame.sql_stmt self.data_src_path = utils.get_source_path(self.net_id, self.net_ver, self.node_id) #xgboost train eval all together self.data_src_eval_path = utils.get_source_path(self.net_id, self.net_ver, 'evaldata') self.data_src_type = wf_data_frame.src_type self.data_server_type = wf_data_frame.src_server self.data_preprocess_type = wf_data_frame.step_preprocess # xgboost train eval all together self.data_store_path = utils.get_store_path(self.net_id, self.net_ver, self.node_id) self.data_store_eval_path = utils.get_store_path(self.net_id, self.net_ver, 'evaldata') self.sent_max_len = wf_data_frame.max_sentence_len self.multi_node_flag = wf_data_frame.multi_node_flag self.drop_duplicate = wf_data_frame.drop_duplicate self.combine_label_list = list() except Exception as e : raise Exception ("WorkFlowDataFrame parms are not set " + str(e))