예제 #1
0
def variable_num_jobs(
    template_dir, output_dir, job_gen_type, topologies, num_nodes, repetition, **kwargs
):
    num_cores = num_cores_per_node * num_nodes

    for topology in topologies:
        num_leaves = common.prod(topology)
        jobs_per_leaf = [1, 4, 16, 64, 256, 1024, 4096]
        if len(topology) > 1:
            # prevent OOM from too many jobs per node
            jobs_per_leaf = jobs_per_leaf[:-1]

        for idx, num_jobs in enumerate([x * num_leaves for x in jobs_per_leaf]):
            est_minutes = common.estimate_num_minutes(
                num_jobs, num_leaves, kwargs["unique_id"]
            )
            hours = int(est_minutes // 60)
            minutes = int(est_minutes % 60)
            kwargs["timelimit"] = "{:02d}:{:02d}:00".format(hours, minutes)
            make_test(
                topology,
                num_jobs,
                num_nodes,
                num_cores_per_node,
                repetition,
                template_dir,
                output_dir,
                job_gen_type,
                **kwargs,
            )
def build_model(template_dir, output_dir, job_gen_type, repetition, **kwargs):
    num_nodes = 1
    num_cores = num_cores_per_node * num_nodes
    topologies = [[1], [1, num_cores_per_node]]
    for topology in topologies:
        jobs = [1, 4, 16, 64, 256, 1024, 4096]
        if len(topology) > 1:
            # prevent OOM from too many jobs per node
            jobs = jobs[:-1]

        if args.small_scale:
            jobs = jobs[:3]
        elif args.medium_scale:
            jobs = jobs[:6]

        for idx, jobs_per_leaf in enumerate(jobs):
            num_leaves = common.prod(topology)
            num_jobs = jobs_per_leaf * num_leaves
            est_minutes = common.estimate_num_minutes(num_jobs, num_leaves,
                                                      kwargs["unique_id"])
            hours = int(est_minutes // 60)
            minutes = int(est_minutes % 60)
            kwargs["timelimit"] = "{:02d}:{:02d}:00".format(hours, minutes)
            make_test(
                topology,
                num_jobs,
                num_nodes,
                num_cores_per_node,
                repetition,
                template_dir,
                output_dir,
                job_gen_type,
                **kwargs,
            )
def just_hierarchy_setup(template_dir, output_dir, job_gen_type, topologies,
                         num_nodes, repetition, **kwargs):
    fake_jobs_kwargs = kwargs.copy()
    fake_jobs_kwargs["command"] = "sleep 0"
    fake_jobs_kwargs["unique_id"] = "setup"
    fake_jobs_kwargs["timelimit"] = "00:05:00"
    fake_jobs_kwargs["just_setup"] = True

    for topology in topologies:
        for nnodes in [1, num_nodes]:
            num_jobs = common.prod(topology)
            make_test(
                topology,
                num_jobs,
                nnodes,
                num_cores_per_node,
                repetition,
                template_dir,
                output_dir,
                job_gen_type,
                **fake_jobs_kwargs,
            )

    fake_jobs_kwargs = kwargs.copy()
    fake_jobs_kwargs["command"] = "flux mini submit -n1 -c1 sleep 0"
    fake_jobs_kwargs["unique_id"] = "sleep0"
    fake_jobs_kwargs["timelimit"] = "00:15:00"

    branch_factors = {bf for topo in topologies for bf in topo}
    for bf in branch_factors:
        for nnodes in [1, num_nodes]:
            num_jobs = bf
            make_test(
                [1],
                num_jobs,
                nnodes,
                num_cores_per_node,
                repetition,
                template_dir,
                output_dir,
                job_gen_type,
                **fake_jobs_kwargs,
            )
예제 #4
0
파일: runner.py 프로젝트: luuqh/exasat
        def runPWLoopModel(linfo, my_params):
            result = {}

            result['linenum'] = linfo['linenum']
            numSweeps = doParamSubs(linfo['sweeps'], my_params)
            result['range'] = (doParamSubs(numIters(linfo['ranges'][0]), my_params), \
                               doParamSubs(numIters(linfo['ranges'][1]), my_params), \
                               doParamSubs(numIters(linfo['ranges'][2]), my_params))
            blockx = my_params['X Block Size'] + (result['range'][0] -
                                                  my_params['X Problem Size'])
            blocky = my_params['Y Block Size'] + (result['range'][1] -
                                                  my_params['Y Problem Size'])
            blockz = my_params['Z Block Size'] + (result['range'][2] -
                                                  my_params['Z Problem Size'])
            result['block'] = [blockx, blocky, blockz]
            numBlocks = (my_params['X Problem Size'] * my_params['Y Problem Size'] * my_params['Z Problem Size']) / \
                         (my_params['X Block Size'] * my_params['Y Block Size'] * my_params['Z Block Size'])
            result['numBlocks'] = numBlocks

            # registers
            result['GPRegs'] = doParamSubs(
                linfo['registers']['ints'] + linfo['registers']['ptrs'],
                my_params)
            result['FPRegs'] = doParamSubs(linfo['registers']['floats'],
                                           my_params)
            result['regAlloc'] = regAllocModel(linfo, my_params)

            # save working set and memory traffic
            result['WSFinal'] = doParamSubs(
                my_params['Word Size'] * linfo['WS']['sizeBlocks'], my_params)
            if result['WSFinal'] <= my_params['$/thread group (kB)'] * 2**10:
                result['BWFinal'] = numBlocks * doParamSubs(my_params[ 'R cost'] * linfo['BW']['sizeBlocks']['R'] + \
                                                            my_params[ 'W cost'] * linfo['BW']['sizeBlocks']['W'] + \
                                                            my_params['RW cost'] * linfo['BW']['sizeBlocks']['RW'], my_params)
            else:
                # if not enough cache, punt on this method
                result['BWFinal'] = float('inf')

            # number of flops and weighted flops
            numCellIters = numSweeps * numBlocks * prod(result['block'])
            result['adds'] = numCellIters * doParamSubs(
                linfo['flops']['adds'], my_params)
            result['multiplies'] = numCellIters * doParamSubs(
                linfo['flops']['multiplies'], my_params)
            result['divides'] = numCellIters * doParamSubs(
                linfo['flops']['divides'], my_params)
            result['specials'] = numCellIters * doParamSubs(
                linfo['flops']['specials'], my_params)
            result['flops'] = result['adds'] + result['multiplies'] + result[
                'divides'] + result['specials']
            result['wflops'] = result['adds'] + result['multiplies'] + my_params['Division Cost'] * result['divides'] + \
                                                                       my_params['Special Cost'] * result['specials']

            # arithmetic intensity
            if result['wflops'] != 0:
                result['BF'] = float(result['BWFinal']) / result['wflops']
            else:
                result['BF'] = float('nan')

            # execution time
            result['cputime'] = float(result['wflops']) / \
                                (my_params['Gflop/s/thread'] * my_params['Threads'] * 10**9)
            result['ramtime'] = float(result['BWFinal']) / \
                                (my_params['GB/s/thread'] * my_params['Threads'] * 2**30)
            # assume perfect overlap
            if result['cputime'] > result['ramtime']:
                result['ramtime'] = 0
            else:
                result['cputime'] = 0
            result['time'] = max(result['cputime'], result['ramtime'])

            return result
예제 #5
0
파일: runner.py 프로젝트: luuqh/exasat
        def runLoopModel(linfo, my_params):
            result = {}

            result['linenum'] = linfo['linenum']
            result['range'] = (doParamSubs(numIters(linfo['ranges'][0]), my_params), \
                               doParamSubs(numIters(linfo['ranges'][1]), my_params), \
                               doParamSubs(numIters(linfo['ranges'][2]), my_params))
            blockx = my_params['X Block Size']
            blocky = my_params['Y Block Size']
            blockz = my_params['Z Block Size']
            result['block'] = [blockx, blocky, blockz]
            result['numBlocks'] = float(prod(result['range'])) / prod(
                result['block'])

            # round blockx up to nearest cache line multiple
            CLWords = my_params['Cache Line Size'] / my_params['Word Size']
            blockx = math.ceil(float(blockx) / CLWords) * CLWords

            # registers
            result['GPRegs'] = doParamSubs(
                linfo['registers']['ints'] + linfo['registers']['ptrs'],
                my_params)
            result['FPRegs'] = doParamSubs(linfo['registers']['floats'],
                                           my_params)
            result['regAlloc'] = regAllocModel(linfo, my_params)

            # Compute working sets and memory traffic for read-only arrays
            arrays = []
            for ainfo in analyze.getR(linfo['arrays']):
                array = {}
                array['name'] = ainfo['name']
                array['access'] = map(lambda x, y: x + diff(y)[0],
                                      result['block'], ainfo['ghost'])
                accessx = array['access'][0]
                accessy = array['access'][1]
                accessz = array['access'][2]

                # round accessx up to nearest cache line multiple
                accessx = math.ceil(float(accessx) / CLWords) * CLWords

                # WS calculation for generic case
                array['WS'] = {'all'  : {'plane' : my_params['Word Size'] * ainfo['WS']['numPlanes'] * \
                                                   accessx * accessy, \
                                         'pencil': my_params['Word Size'] * ainfo['WS']['numPencils'] * \
                                                   accessx, \
                                         'cell'  : my_params['Word Size'] * ainfo['WS']['numCells'], \
                                        }, \
                               'reuse': {'plane' : my_params['Word Size'] * ainfo['WS']['numReusePlanes'] * \
                                                   accessx * accessy, \
                                         'pencil': my_params['Word Size'] * ainfo['WS']['numReusePencils'] * \
                                                   accessx, \
                                         'cell'  : my_params['Word Size'] * ainfo['WS']['numReuseCells'], \
                                        }, \
                              }
                # fix the plane WS for faces-only stencils
                if ainfo['stenciltype'] == 'faces':

                    array['WS']['all']['plane'] = my_params['Word Size'] * \
                        ((ainfo['WS']['numPlanes'] - 1) * (blockx * blocky) + \
                         1 * (blockx * accessy + accessx * blocky - blockx * blocky))
                    array['WS']['all']['pencil'] = my_params['Word Size'] * \
                        ((ainfo['WS']['numPencils'] - 1) * blockx + 1 * accessx)

                    array['WS']['reuse']['plane'] = my_params['Word Size'] * \
                        ((ainfo['WS']['numReusePlanes'] - 1) * (blockx * blocky) + \
                         1 * (blockx * accessy + accessx * blocky - blockx * blocky))
                    array['WS']['reuse']['pencil'] = my_params['Word Size'] * \
                        ((ainfo['WS']['numReusePencils'] - 1) * blockx + 1 * accessx)

                # BW calculation for generic case
                array['BW'] = {'block' : result['numBlocks'] * ainfo['BW']['numCopies'] * my_params['R cost'] * \
                                         accessx * accessy * accessz, \
                               'plane' : result['numBlocks'] * ainfo['BW']['numPlanes'] * my_params['R cost'] * \
                                         accessx * accessy * blockz, \
                               'pencil': result['numBlocks'] * ainfo['BW']['numPencils'] * my_params['R cost'] * \
                                         accessx * blocky * blockz, \
                               'cell'  : result['numBlocks'] * ainfo['BW']['numCells'] * my_params['R cost'] * \
                                         blockx * blocky * blockz, \
                              }
                # fix the block and plane BW for faces-only stencils
                if ainfo['stenciltype'] == 'faces':
                    array['BW']['block'] = result['numBlocks'] * ainfo['BW']['numCopies'] * my_params['R cost'] * \
                        (accessx * blocky * blockz + blockx * accessy * blockz + \
                         blockx * blocky * accessz - 2 * blockx * blocky * blockz)
                    array['BW']['plane'] = result['numBlocks'] * my_params['R cost'] * \
                        ((ainfo['BW']['numPlanes'] - 1) * (blockx * blocky) + \
                         1 * (accessx * blocky + blockx * accessy - blockx * blocky)) * blockz
                    array['BW']['pencil'] = result['numBlocks'] * my_params['R cost'] * \
                        ((ainfo['BW']['numPencils'] - 1) * blockx + 1 * accessx) * blocky * blockz

                arrays.append(array)

            sumWSAllPlane = sum(map(lambda x: x['WS']['all']['plane'], arrays))
            sumWSAllPencil = sum(
                map(lambda x: x['WS']['all']['pencil'], arrays))
            sumWSAllCell = sum(map(lambda x: x['WS']['all']['cell'], arrays))
            sumWSReusePlane = sum(
                map(lambda x: x['WS']['reuse']['plane'], arrays))
            sumWSReusePencil = sum(
                map(lambda x: x['WS']['reuse']['pencil'], arrays))
            sumWSReuseCell = sum(
                map(lambda x: x['WS']['reuse']['cell'], arrays))

            sumBWBlock = sum(map(lambda x: x['BW']['block'], arrays))
            sumBWPlane = sum(map(lambda x: x['BW']['plane'], arrays))
            sumBWPencil = sum(map(lambda x: x['BW']['pencil'], arrays))
            sumBWCell = sum(map(lambda x: x['BW']['cell'], arrays))

            result['arrays'] = arrays

            # Compute working sets for different scenarios
            result['WS'] = {'all'   : {'plane' : sumWSAllPlane + my_params['Word Size'] * \
                                                 (linfo['WS']['numPlanes']['RW'] + linfo['WS']['numPlanes']['W']) * \
                                                 blockx * blocky, \
                                       'pencil': sumWSAllPencil + my_params['Word Size'] * \
                                                 (linfo['WS']['numPencils']['RW'] + linfo['WS']['numPencils']['W']) * \
                                                 blockx, \
                                       'cell'  : sumWSAllCell + my_params['Word Size'] * \
                                                 (linfo['WS']['numCells']['RW'] + linfo['WS']['numCells']['W']), \
                                      }, \
                            'stream': {'plane' : sumWSAllPlane, \
                                       'pencil': sumWSAllPencil, \
                                       'cell'  : sumWSAllCell, \
                                      }, \
                            'reuse' : {'plane' : sumWSReusePlane, \
                                       'pencil': sumWSReusePencil, \
                                       'cell'  : sumWSReuseCell, \
                                      }, \
                           }

            # Determine actual working sets based on cache utilization policy
            if my_params['NTA Hints']:
                result['WS']['actual'] = result['WS']['reuse']
            elif my_params['Streaming Writes']:
                result['WS']['actual'] = result['WS']['stream']
            else:
                result['WS']['actual'] = result['WS']['all']

            # Compute memory traffic for different reuse scenarios
            numSweeps = doParamSubs(linfo['sweeps'], my_params)
            RWWBW = (linfo['BW']['numArrays']['RW'] * my_params['RW cost'] + \
                     linfo['BW']['numArrays']['W' ] * my_params['W cost' ]) * result['numBlocks'] * blockx * blocky * blockz
            result['BW'] = {'block' : numSweeps * (sumBWBlock  + RWWBW), \
                            'plane' : numSweeps * (sumBWPlane  + RWWBW), \
                            'pencil': numSweeps * (sumBWPencil + RWWBW), \
                            'cell'  : numSweeps * (sumBWCell   + RWWBW), \
                           }

            # do symbolic parameter substitutions
            for x in result['WS'].values():
                for (y, z) in x.iteritems():
                    x[y] = doParamSubs(z, my_params)
            for (y, z) in result['BW'].iteritems():
                result['BW'][y] = doParamSubs(z, my_params)

            # bandwidth should be no worse than model prediction for cases with worse reuse,
            #   but model approximations cause different inaccuracies for different cases
            result['BW']['pencil'] = min(result['BW']['pencil'],
                                         result['BW']['cell'])
            result['BW']['plane'] = min(result['BW']['plane'],
                                        result['BW']['pencil'])
            result['BW']['block'] = min(result['BW']['block'],
                                        result['BW']['plane'])

            # if there's no difference between memory traffic, working set is effectively reduced
            if result['BW']['pencil'] == result['BW']['cell']:
                result['WS']['actual']['cell'] = 0
            if result['BW']['plane'] == result['BW']['pencil']:
                result['WS']['actual']['pencil'] = result['WS']['actual'][
                    'cell']
            if result['BW']['block'] == result['BW']['plane']:
                result['WS']['actual']['plane'] = result['WS']['actual'][
                    'pencil']

            # Compute "actual" memory traffic based on type of reuse given available cache
            if result['WS']['actual'][
                    'plane'] <= my_params['$/thread group (kB)'] * 2**10:
                result['BW']['actual'] = result['BW']['block']
            elif result['WS']['actual'][
                    'pencil'] <= my_params['$/thread group (kB)'] * 2**10:
                result['BW']['actual'] = result['BW']['plane']
            elif result['WS']['actual'][
                    'cell'] <= my_params['$/thread group (kB)'] * 2**10:
                result['BW']['actual'] = result['BW']['pencil']
            else:
                result['BW']['actual'] = result['BW']['cell']

            # save final WS and BW
            result['WSFinal'] = result['WS']['actual']['plane']
            result['BWFinal'] = result['BW']['actual']

            # number of flops and weighted flops
            result['adds'] = numSweeps * prod(result['range']) * doParamSubs(
                linfo['flops']['adds'], my_params)
            result['multiplies'] = numSweeps * prod(
                result['range']) * doParamSubs(linfo['flops']['multiplies'],
                                               my_params)
            result['divides'] = numSweeps * prod(
                result['range']) * doParamSubs(linfo['flops']['divides'],
                                               my_params)
            result['specials'] = numSweeps * prod(
                result['range']) * doParamSubs(linfo['flops']['specials'],
                                               my_params)
            result['flops'] = result['adds'] + result['multiplies'] + result[
                'divides'] + result['specials']
            result['wflops'] = result['adds'] + result['multiplies'] + my_params['Division Cost'] * result['divides'] + \
                                                                       my_params['Special Cost'] * result['specials']

            # arithmetic intensity
            if result['wflops'] != 0:
                result['BF'] = float(result['BWFinal']) / result['wflops']
            else:
                result['BF'] = float('nan')

            # execution time
            result['cputime'] = float(result['wflops']) / \
                                (my_params['Gflop/s/thread'] * my_params['Threads'] * 10**9)
            result['ramtime'] = float(result['BW']['actual']) / \
                                (my_params['GB/s/thread'] * my_params['Threads'] * 2**30)
            # assume perfect overlap
            if result['cputime'] > result['ramtime']:
                result['ramtime'] = 0
            else:
                result['cputime'] = 0
            result['time'] = max(result['cputime'], result['ramtime'])

            return result
예제 #6
0
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
"""

g = [[int(i) for i in line.split()] for line in grid.strip().split('\n')]

maxprod = 0
o = list(range(0, 4))

for x in range(0, SIDE - 3):
    for y in range(0, SIDE - 3):
        p_v = [g[x + i][y] for i in o]
        p_h = [g[x][y + i] for i in o]
        p_d = [g[x + i][y + i] for i in o]
        p_d2 = [g[x + 3 - i][y + i] for i in o]

        maxprod = max(maxprod, prod(p_h), prod(p_v), prod(p_d), prod(p_d2))

print(maxprod)
예제 #7
0
 def __pow__(self, n):
     return common.prod([self]*n)
예제 #8
0
        def getLiveArrays(fname, finfo, memTableFlag=True):

            # first, some helper functions to compute and manipulate access ranges

            def computeAccessRange(ranges, ghost):
                return map(
                    lambda x, y: map(lambda w, z: doSymSubs(w) + z, x, y),
                    ranges, ghost)

            def mySymMin(x, y):
                # HACK: for now, assume ng equals 4 so we can compare access ranges
                if options.flag_warn and not 'ng==4' in options.warned:
                    options.warned.add('ng==4')
                    print >> sys.stderr, 'Warning: assuming ng == 4 for PW execution model'
                x = x.subs('ng', 4)
                y = y.subs('ng', 4)
                testExpr = ask(~Q.positive(x - y), Q.positive(Symbol('ng')))
                if type(testExpr) == type(True):
                    return x if testExpr else y
                else:
                    return parse_expr('min(%s, %s)' % (x, y))

            def mySymMax(x, y):
                # HACK: for now, assume ng equals 4 so we can compare access ranges
                if options.flag_warn and not 'ng==4' in options.warned:
                    options.warned.add('ng==4')
                    print >> sys.stderr, 'WARNING: assuming ng == 4 for PW execution model'
                x = x.subs('ng', 4)
                y = y.subs('ng', 4)
                testExpr = ask(~Q.negative(x - y), Q.positive(Symbol('ng')))
                if type(testExpr) == type(True):
                    return x if testExpr else y
                else:
                    return parse_expr('max(%s, %s)' % (x, y))

            def maxAccessRange(x, y):
                # unpack range and stencil type from inputs
                (x, xt) = x
                (y, yt) = y
                maxRange = map(
                    lambda w, z: (mySymMin(w[0], z[0]), mySymMax(w[1], z[1])),
                    x, y)
                if xt == 'all' or yt == 'all':
                    maxStencilType = 'all'
                elif xt == 'faces' or yt == 'faces':
                    maxStencilType = 'faces'
                elif xt == 'edges' or yt == 'edges':
                    maxStencilType = 'edges'
                else:
                    maxStencilType = 'cell'
                return (maxRange, maxStencilType)

            # if no custom execution order, use default
            numLoops = len(finfo['loops'])
            if 'execorder' in finfo:
                if len(finfo['execorder']) != numLoops or \
                   set(finfo['execorder']) != set(range(0, numLoops)):
                    raise Exception(
                        'custom execution order must be a permutation of range(0, len(loops))'
                    )
            else:
                finfo['execorder'] = range(0, numLoops)

            # gather RW information into table
            table = []
            arrays = {}
            loops_execorder = [finfo['loops'][i] for i in finfo['execorder']]
            for idx, linfo in enumerate(loops_execorder):
                lname = "%s.%03d" % (fname, linfo['linenum'])
                table.append({})
                for ainfo in linfo['arrays']:

                    aname = ainfo['name']
                    accesstype = ainfo['accesstype']
                    copies = ainfo['copies']

                    if accesstype == 'readonly':
                        table[idx][aname] = ('R', copies)
                    elif accesstype == 'writeonly':
                        table[idx][aname] = ('W', copies)
                    elif accesstype == 'readwrite':
                        table[idx][aname] = ('RW', copies)
                    elif accesstype == 'writeread':
                        table[idx][aname] = ('WR', copies)

                    if accesstype == 'readonly':
                        dirty = False
                    else:
                        dirty = True

                    if aname not in arrays:
                        # compute access range and initialize array analysis data
                        accessRange = (computeAccessRange(
                            linfo['ranges'],
                            ainfo['ghost']), ainfo['stenciltype'])
                        arrays[aname] = {'firstidx': idx, 'firstaccess': accesstype, \
                                         'copies': copies, 'accessrange': accessRange}
                    else:
                        # update max access range
                        accessRange = (computeAccessRange(
                            linfo['ranges'],
                            ainfo['ghost']), ainfo['stenciltype'])
                        arrays[aname]['accessrange'] = maxAccessRange(
                            arrays[aname]['accessrange'], accessRange)

                        # do some checks
                        lastidx = arrays[aname]['lastidx']
                        lastaccess = arrays[aname]['lastaccess']
                        dirty = dirty or arrays[aname]['dirty']

                        if arrays[aname][
                                'copies'] != copies and options.flag_warn:
                            print >> sys.stderr, 'Warning: number of copies mismatch: (%s, %s, %s)' % \
                                  (aname, arrays[aname]['copies'], copies)

                        if (lastaccess == 'writeonly' or lastaccess == 'readwrite') and \
                           (accesstype == 'writeonly' or accesstype == 'writeread') and options.flag_warn:
                            print >> sys.stderr, 'Warning: value not used between two writes: (%s, %s.%d, %s)' % \
                                  (aname, fname, loops_execorder[lastidx]['linenum'], lname)

                        # check if array needs to be present in cache since last access
                        if accesstype == 'readonly' or accesstype == 'readwrite':
                            for i in xrange(lastidx + 1, idx):
                                table[i][aname] = ('P', copies)

                    # update array analysis data
                    arrays[aname]['lastidx'] = idx
                    arrays[aname]['lastaccess'] = accesstype
                    arrays[aname]['dirty'] = dirty

            # compute block working set sizes using computed array max access ranges
            for (idx, linfo) in enumerate(loops_execorder):
                linfo['WS']['numBlocks'] = 0
                linfo['WS']['sizeBlocks'] = 0
                # for each array accessed (R/W/RW) or present (P) during this loop
                for aname in table[idx].keys():
                    array = arrays[aname]
                    if 'size' not in array:
                        box = (Symbol('__BoxX__'), Symbol('__BoxY__'),
                               Symbol('__BoxZ__'))
                        acc = map(doSymSubs,
                                  map(rangeSize, array['accessrange'][0]))
                        # check stencil shape to see if we can trim edges and corners from the box
                        if array['accessrange'][1] == 'faces':
                            array['size'] = array['copies'] * (acc[0]*box[1]*box[2] + box[0]*acc[1]*box[2] + \
                                                               box[0]*box[1]*acc[2] - 2*box[0]*box[1]*box[2])
                        elif array['accessrange'][1] == 'edges':
                            array['size'] = array['copies'] * (
                                prod(acc) - prod(map(sub, acc, box)))
                        else:
                            # this works for 'all' or 'cell'
                            array['size'] = array['copies'] * prod(acc)
                        # since this working set is for blocked execution, substitute block sizes for box sizes
                        array['size'] = array['size'].subs((('__BoxX__', '__BlockX__'), \
                                                            ('__BoxY__', '__BlockY__'), \
                                                            ('__BoxZ__', '__BlockZ__')))
                    linfo['WS']['numBlocks'] += array['copies']
                    linfo['WS']['sizeBlocks'] += array['size']

            # initialize bandwidth numbers to 0
            for linfo in loops_execorder:
                linfo['BW']['numBlocks'] = {'R': 0, 'RW': 0, 'W': 0}
                linfo['BW']['sizeBlocks'] = {'R': 0, 'RW': 0, 'W': 0}

            # for each array, figure out if/when it needs to be streamed to/from memory
            for aname in arrays:
                base = string.split(aname, '.')[0]
                firstidx = arrays[aname]['firstidx']
                lastidx = arrays[aname]['lastidx']

                if base in finfo['nonlocal']:
                    streamin = (arrays[aname]['firstaccess'] == 'readonly' or \
                                arrays[aname]['firstaccess'] == 'readwrite')
                    streamout = arrays[aname]['dirty']
                    if streamin:
                        loops_execorder[firstidx]['BW']['numBlocks'][
                            'R'] += arrays[aname]['copies']
                        loops_execorder[firstidx]['BW']['sizeBlocks'][
                            'R'] += arrays[aname]['size']
                        if memTableFlag:
                            for i in xrange(0, firstidx):
                                table[i][aname] = ('P',
                                                   arrays[aname]['copies'])
                    if streamout:
                        if streamin:
                            loops_execorder[lastidx]['BW']['numBlocks'][
                                'RW'] += arrays[aname]['copies']
                            loops_execorder[lastidx]['BW']['sizeBlocks'][
                                'RW'] += arrays[aname]['size']
                            # since we counted a read earlier, don't overcount the extra read
                            loops_execorder[lastidx]['BW']['numBlocks'][
                                'R'] -= arrays[aname]['copies']
                            loops_execorder[lastidx]['BW']['sizeBlocks'][
                                'R'] -= arrays[aname]['size']
                        else:
                            loops_execorder[lastidx]['BW']['numBlocks'][
                                'W'] += arrays[aname]['copies']
                            loops_execorder[lastidx]['BW']['sizeBlocks'][
                                'W'] += arrays[aname]['size']
                        if memTableFlag:
                            for i in xrange(lastidx + 1, len(table)):
                                table[i][aname] = ('P',
                                                   arrays[aname]['copies'])

            finfo['liveness'] = table
예제 #9
0
                #print("Rule: {} Ticket value: {}".format(rule_dict[field], ticket[i]))
                field_dict[field].remove(i)
                break

assigned_fields = {}

while len(assigned_fields) < len(field_dict):
    # Find which field has only a single ticket field index for which it is valid
    assigned_field = None
    for field in field_dict:
        if len(field_dict[field]) == 1:
            assigned_field = field_dict[field][0]
            assigned_fields[field] = assigned_field

    for field in field_dict:
        try:
            field_dict[field].remove(assigned_field)
        except:
            pass

#print(assigned_fields)

my_ticket_values = [int(val) for val in input[1][1].split(",")]
my_relevant_ticket_values = []
for field in assigned_fields:
    if re.match("^departure", field):
        my_relevant_ticket_values.append(
            my_ticket_values[assigned_fields[field]])

print(prod(my_relevant_ticket_values))
예제 #10
0
def num_factors(f1, f2):
    f1 = prime_factorize(f1)
    f2 = prime_factorize(f2)
    return prod(v + 1 for k, v in add_factors(f1, f2).items())
예제 #11
0
def add_factors(f1, f2):
    keys = set(f1) | set(f2)
    factors = {}
    for k in keys:
        factors[k] = f1.get(k, 0) + f2.get(k, 0)
    return factors


@cached
def prime_factorize(n):
    global sieve
    if n == 1:
        return {}
    for p in sieve.sift(int(n**0.5)):
        if n % p == 0:
            return add_factors({p: 1}, prime_factorize(n // p))
    return {n: 1}


def num_factors(f1, f2):
    f1 = prime_factorize(f1)
    f2 = prime_factorize(f2)
    return prod(v + 1 for k, v in add_factors(f1, f2).items())


for i in itertools.count(1):
    factors = [(j / 2 if j % 2 == 0 else j) for j in i, i + 1]
    if num_factors(*factors) > 500:
        print prod(factors)
        break
예제 #12
0
# Move right 20 times and down 20 times
# Number of routes is arrangements of 'r'*20 + 'd'*20
# 40!/(20! 20!)

from common import prod

print prod(range(21, 41)) / prod(range(1, 21))
예제 #13
0
파일: problem12.py 프로젝트: nakulj/euler
def num_factors(f1, f2):
	f1 = prime_factorize(f1)
	f2 = prime_factorize(f2)
	return prod(v+1 for k,v in add_factors(f1, f2).items())
예제 #14
0
파일: problem12.py 프로젝트: nakulj/euler
sieve = Sieve()

def add_factors(f1, f2):
	keys = set(f1) | set(f2)
	factors = {}
	for k in keys:
		factors[k] = f1.get(k,0) + f2.get(k,0)
	return factors

@cached
def prime_factorize(n):
	global sieve;
	if n == 1:
		return {}
	for p in sieve.sift(int(n**0.5)):
		if n%p == 0:
			return add_factors({p:1},prime_factorize(n//p))
	return {n:1}
	
def num_factors(f1, f2):
	f1 = prime_factorize(f1)
	f2 = prime_factorize(f2)
	return prod(v+1 for k,v in add_factors(f1, f2).items())

for i in itertools.count(1):
	factors = [(j/2 if j%2 == 0 else j) for j in i,i+1]
	if num_factors(*factors) > 500:
		print prod(factors)
		break
예제 #15
0
파일: problem11.py 프로젝트: nakulj/euler
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48\
'''

numbers = [map(int, s.split()) for s in numbers.split('\n')]
n = 20
l = 4
max_prod = MaxAccumulator(0)

# search across and up/down
for i in range(n):
	for j in range(n-l):
		max_prod.update(
			prod(numbers[i][j:j+l])
		)
		max_prod.update(
			prod(lst[i] for lst in numbers[j:j+l])
		)

# search diagonals
for i in range(n-l-1):
	for j in range(n-l-1):
		max_prod.update(
			prod(numbers[i+x][j+x] for x in range(l))
		)

for i in range(l-1, n):
	for j in range(n-l-1):
		max_prod.update(
예제 #16
0
#!/usr/bin/env python

from itertools import count
from common import prod

lens = [1, 10, 100, 1000, 10000, 100000, 1000000]
MAX = max(lens)
s = "0"

for a in count(1):
    s += str(a)
    if len(s) > MAX:
        break

p = prod(int(s[a]) for a in lens)
print(p)
예제 #17
0
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48\
'''

numbers = [map(int, s.split()) for s in numbers.split('\n')]
n = 20
l = 4
max_prod = MaxAccumulator(0)

# search across and up/down
for i in range(n):
    for j in range(n - l):
        max_prod.update(prod(numbers[i][j:j + l]))
        max_prod.update(prod(lst[i] for lst in numbers[j:j + l]))

# search diagonals
for i in range(n - l - 1):
    for j in range(n - l - 1):
        max_prod.update(prod(numbers[i + x][j + x] for x in range(l)))

for i in range(l - 1, n):
    for j in range(n - l - 1):
        max_prod.update(prod(numbers[i - x][j + x] for x in range(l)))

print max_prod.max_val
예제 #18
0
        self.domain = len(self.grid[0])
        self.range = len(self.grid)

    def lookup(self, x, y):
        if isinstance(x, tuple):
            x, y = x

        return self.grid[y % self.range][x % self.domain]


m = RepeatMap(data)
path = [m.lookup(3 * i, i) for i in range(m.range)]
len_path = len(list(filter(lambda v: v == '#', path)))

#print(len_path)


# Day two
def trees_on_path(m, slope):
    path = [
        m.lookup(slope[0] * i, slope[1] * i)
        for i in range(0, ceil(m.range / slope[1]))
    ]
    return len(list(filter(lambda v: v == '#', path)))


print(
    prod(
        trees_on_path(m, slope)
        for slope in [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)]))
예제 #19
0
def congruence_system(system):
    """Chinese remainder theorem, constructionist expansion"""
    N = prod(v[1] for v in system)
    return sum(a * N // n * invmod(N // n, n) for a, n in system) % N
예제 #20
0
from functools import partial, reduce
from itertools import combinations
from pprint import pprint

from common import drop, partitionby, prod, read_input

import numpy as np

data = [int(l) for l in read_input('data.input.day10')]
data = [0] + data + [max(data) + 3]
data = np.sort(np.array(data))

diffs = data[1:] - data[:-1]
#print(sum(diffs == 1) * sum(diffs == 3))

# part 2

f = lambda v: v == 1
ld = list(map(len, partitionby(f, diffs)))

# okay, so i use a diff map which has 1 less member per group of adapters, that's why we have "- 1"
# instead of "- 2", for each set of adapters we have the varying sequences we can turn on/off

# [(0, 1, 2, 3, 4), (0, 1, 2, 4), (0, 1, 4), (0, 1, 3, 4), (0, 3, 4), (0, 2, 3, 4)]
# notice there are (length - 2) * 2 choices.
# but then also the additional case: (0, 2, 4) and this occurs once for every 5 numbers, but every 4 diffs!

l = [(v - 1) * 2 + v // 4 for v in ld if v > 1]

print(prod(l))