import numpy as np import scipy.io import importlib import common importlib.reload(common) from scipy import signal output_directory = common.set_output_directory('cursor_gaze_movie\\') is_load_fresh = False LOC_CODE = np.array([ [3, 7], # - uppermost left, lowermost right [4, 8], # - upper left, lower right [5, 1], # - lower left, upper right [6, 2] ]) # lowermost left, uppermost right colour_location = np.array([[0.5, 0.25, 0.6], [1, 0, 1], [1, 0, 0], [1, 0.36, 0], [1, 1, 0], [0, 1, 0], [0, 1, 1], [0, 0, 1]]) mat1 = scipy.io.loadmat(file_name="..\\data_manager\\CheckFiles2\\fname.mat" ) # 'samples', 'GAZE', 'PUPIL', 'type' CursorData = common.CursorData dispatch_dictionary = {"CursorData": CursorData} class Sizes: target = 76.9231
import scipy.io import numpy as np import common import time import os import matplotlib.pyplot as plt import FieldTrip2 import subprocess output_directory = common.set_output_directory('prepare_cursor_gaze\\') start = time.time() mat = scipy.io.loadmat('..\\visual_input\\movie_cursor_eye\\test.mat') cursor_xy = mat['CURSOR_XY2'][0, 0] #np.save(file=output_directory + 'test.npy', arr=cursor_xy) # #np.savetxt(fname=output_directory + 'test.npy', X=cursor_xy) # del cursor_xy # array = np.load(file=output_directory + 'test.npy', allow_pickle=True) dimensions = cursor_xy.shape class Number: axes = 2 frames = 360 trials = 480 cursors = 3 Number.axes = dimensions[0]
cmd = [executable_path, 'a', output_file, input_path + '/*'] system = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) try: log_print(system.communicate()[0].decode('ascii')) except Exception as e: # log_print(e) log_print('communicate failed?') log_print(time.time() - start) log_output_path = common.set_output_directory("backup_project\\") executable_path = "D:\\Program Files (x86)\\7za920\\7za" parent_input_path = 'D:\\JOINT.ACTION\\JointActionRevision\\' parent_output_path = 'E:\\JOINT_ACTION_BACKUPS\\joint-action-backup-2020.01.19\\' ## filename = log_output_path + datetime.now().strftime( "%Y-%m-%d %H.%M.%S") + '.txt' f = open(filename, 'w') directories = get_sorted_subdirectories(parent_input_path) start = time.time()
import time import numpy as np import scipy.io import matplotlib.pyplot as plt import matplotlib matplotlib.use("Qt5Agg") import importlib import common importlib.reload(common) import pandas as pd from scipy import stats output_directory = common.set_output_directory('eye_single_trial\\') is_generate_heatmaps_and_distance = True x_edges = np.arange(start=-13, stop=+13, step=.1) y_edges = np.arange(start=-13, stop=+13, step=.1) epoch_length1 = 2.5 limit_seconds1 = [[-epoch_length1, 0], [0, +epoch_length1]] common.Number.frames1 = int(epoch_length1 * common.FS.eye) plt.hot() def generate_subject_code(): subject_code = np.empty([common.Number.subjects, 3])
globals().clear() import pandas as pd import datetime from tabulate import tabulate import numpy as np from pyarrow import feather import common output_directory = common.set_output_directory("casual_hours_calculator\\") def my_tabulate(results): if isinstance(results, type(pd.Series())): results = pd.DataFrame(results) print(tabulate(results, headers='keys', tablefmt='psql')) class WorkDay: date = None timesheet = None summary = None def __init__(self, date, timesheet, summary): self.date = date self.timesheet = timesheet self.summary = summary class Summary: start = None
import pandas as pd from pdf2image import convert_from_path import time import os import common output_directory = common.set_output_directory('trajectories\\') data_path = r'D:\JOINT.ACTION\JointActionRevision\analysis\JointActionStatisticsR2\Figure2_new' number_of_control = 3 number_of_visibility = 2 number_of_figure = 2 str_control = ['HP Solo', 'LP Solo', 'Joint'] str_visibility = ['Visible', 'Invisible'] str_figure = ["endpoint", "trajectory"] figure_list = [] i = 0 for VISIBILITY in str_visibility: for CONTROL in str_control: figure_list.append([VISIBILITY, CONTROL, i]) i += 1 figure_key = pd.DataFrame(figure_list, columns=['visibility', 'control', 'i']) for FIGURE in [0]: figure_list = []
import numpy as np import scipy.io import mat73 import importlib import common importlib.reload(common) import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter from scipy import stats from PIL import Image output_directory = common.set_output_directory( 'collate_single_trial_results\\') ## ----- data structures class SingleTrialValues: control_codes = None accuracy = None RT = None MT = None curvature = None endpoint_displacement = None gaze_distance = None behavioral_coupling = None task_cue = None neural_coupling = None
import moviepy.video.io.ImageSequenceClip import os import common import time import numpy as np output_directory = common.set_output_directory("save_movies\\") sessions_to_use = np.array(range(0, 20)) for SESSION in sessions_to_use: common.print_stars() print(SESSION) if SESSION == 1: print('missing eye data...') continue start = time.time() image_folder = 'D:\\JOINT.ACTION\\JointActionRevision\\analysis\\Unity2\\RESULTS2\\' + common.Labels.session2[SESSION] + '\\' image_files = [image_folder + '/' + img for img in os.listdir(image_folder) if img.endswith(".png")] clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps=30) clip.write_videofile(output_directory + common.Labels.session2[SESSION] + '.mp4') stop = time.time() print(stop-start)