예제 #1
0
class  ReverseEasyScheduler(EasyBackfillScheduler):
    
    def __init__(self, options):
        super(ReverseEasyScheduler, self).__init__(options)
        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])

    
    def _backfill_jobs(self, current_time):
        "Overriding parent method"
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []  
        first_job = self.unscheduled_jobs[0]        
        tail =  list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_reverse_order = sorted(tail, key=latest_sort_key)
        
        self.cpu_snapshot.assignJobEarliest(first_job, current_time)
        
        for job in tail_of_jobs_by_reverse_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time): 
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
                
        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
class  TailDoubleEasyScheduler(EasyBackfillScheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """
    
    def __init__(self, options):
        super(TailDoubleEasyScheduler, self).__init__(options)
        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])

    
    def _backfill_jobs(self, current_time):
        "Overriding parent method"
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []  
        first_job = self.unscheduled_jobs[0]        
        tail =  list_copy(self.unscheduled_jobs[1:]) 
        
        self.cpu_snapshot.assignJobEarliest(first_job, current_time)
        
        for job in tail:
            job.predicted_run_time = 2 * job.user_estimated_run_time # doubling is done here 
            if self.cpu_snapshot.canJobStartNow(job, current_time): # if job can be backfilled 
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
            else:
                job.predicted_run_time = job.user_estimated_run_time # undoubling is done here 
                
        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
예제 #3
0
class ConservativeScheduler(Scheduler):
    def __init__(self, options):
        super(ConservativeScheduler, self).__init__(options)
        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])
        self.unfinished_jobs_by_submit_time = []

    def new_events_on_job_submission(self, job, current_time):
        self.cpu_snapshot.archive_old_slices(current_time)
        self.unfinished_jobs_by_submit_time.append(job)
        self.cpu_snapshot.assignJobEarliest(job, current_time)
        return [JobStartEvent(job.start_to_run_at_time, job)]

    def new_events_on_job_termination(self, job, current_time):
        """ Here we delete the tail of job if it was ended before the duration declaration.
        It then reschedules the remaining jobs and returns a collection of new termination events
        (using the dictionary data structure) """
        self.cpu_snapshot.archive_old_slices(current_time)
        self.unfinished_jobs_by_submit_time.remove(job)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return self._reschedule_jobs(current_time)

    def _reschedule_jobs(self, current_time):
        newEvents = []
        for job in self.unfinished_jobs_by_submit_time:
            if job.start_to_run_at_time <= current_time:
                continue  # job started to run before, so it cannot be rescheduled (preemptions are not allowed)
            prev_start_to_run_at_time = job.start_to_run_at_time
            self.cpu_snapshot.delJobFromCpuSlices(job)
            self.cpu_snapshot.assignJobEarliest(job, current_time)
            assert prev_start_to_run_at_time >= job.start_to_run_at_time
            if prev_start_to_run_at_time != job.start_to_run_at_time:
                newEvents.append(JobStartEvent(job.start_to_run_at_time, job))
        return newEvents
class ConservativeScheduler(Scheduler):

    def __init__(self, options):
        super(ConservativeScheduler, self).__init__(options)
        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])
        self.unfinished_jobs_by_submit_time = []

    def new_events_on_job_submission(self, job, current_time):
        self.cpu_snapshot.archive_old_slices(current_time)
        self.unfinished_jobs_by_submit_time.append(job)
        self.cpu_snapshot.assignJobEarliest(job, current_time)
        return [ JobStartEvent(job.start_to_run_at_time, job) ]

    def new_events_on_job_termination(self, job, current_time):
        """ Here we delete the tail of job if it was ended before the duration declaration.
        It then reschedules the remaining jobs and returns a collection of new termination events
        (using the dictionary data structure) """
        self.cpu_snapshot.archive_old_slices(current_time)
        self.unfinished_jobs_by_submit_time.remove(job)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return self._reschedule_jobs(current_time)

    def _reschedule_jobs(self, current_time):
        newEvents = []
        for job in self.unfinished_jobs_by_submit_time:
            if job.start_to_run_at_time <= current_time:
                continue # job started to run before, so it cannot be rescheduled (preemptions are not allowed)
            prev_start_to_run_at_time = job.start_to_run_at_time
            self.cpu_snapshot.delJobFromCpuSlices(job)
            self.cpu_snapshot.assignJobEarliest(job, current_time)
            assert prev_start_to_run_at_time >= job.start_to_run_at_time
            if prev_start_to_run_at_time != job.start_to_run_at_time:
                newEvents.append( JobStartEvent(job.start_to_run_at_time, job) )
        return newEvents
class EasySJBFScheduler(EasyBackfillScheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """
    def __init__(self, num_processors):
        super(EasySJBFScheduler, self).__init__(num_processors)
        self.cpu_snapshot = CpuSnapshot(num_processors)

    def _backfill_jobs(self, current_time):
        "Overriding parent method"
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []
        first_job = self.unscheduled_jobs[0]
        tail = list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)

        self.cpu_snapshot.assignJobEarliest(first_job, current_time)

        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time):
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)

        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
예제 #6
0
class EasySJBFScheduler(EasyBackfillScheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """

    def __init__(self, num_processors):
        super(EasySJBFScheduler, self).__init__(num_processors)
        self.cpu_snapshot = CpuSnapshot(num_processors)

    def _backfill_jobs(self, current_time):
        "Overriding parent method"
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []
        first_job = self.unscheduled_jobs[0]
        tail = list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)

        self.cpu_snapshot.assignJobEarliest(first_job, current_time)

        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time):
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)

        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
class  EasyPlusPlusScheduler(Scheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """

    I_NEED_A_PREDICTOR = True

    def __init__(self, options):
        super(EasyPlusPlusScheduler, self).__init__(options)
        self.init_predictor(options)
        self.init_corrector(options)

        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])
        self.unscheduled_jobs = []


    def new_events_on_job_submission(self, job, current_time):

        self.cpu_snapshot.archive_old_slices(current_time)
        self.predictor.predict(job, current_time, self.running_jobs)
        if not hasattr(job,"initial_prediction"):
            job.initial_prediction=job.predicted_run_time
        self.unscheduled_jobs.append(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]


    def new_events_on_job_termination(self, job, current_time):
        self.predictor.fit(job, current_time)

        if self.corrector.__name__=="ninetynine":
            self.pestimator.fit(job.actual_run_time/job.user_estimated_run_time)

        self.cpu_snapshot.archive_old_slices(current_time)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]


    def new_events_on_job_under_prediction(self, job, current_time):
        pass #assert job.predicted_run_time <= job.user_estimated_run_time

        if not hasattr(job,"num_underpredict"):
            job.num_underpredict = 0
        else:
            job.num_underpredict += 1

        if self.corrector.__name__=="ninetynine":
            new_predicted_run_time = self.corrector(self.pestimator,job,current_time)
        else:
            new_predicted_run_time = self.corrector(job, current_time)

        #set the new predicted runtime
        self.cpu_snapshot.assignTailofJobToTheCpuSlices(job, new_predicted_run_time)
        job.predicted_run_time = new_predicted_run_time

        return [JobStartEvent(current_time, job)]


    def _schedule_jobs(self, current_time):
        "Schedules jobs that can run right now, and returns them"

        jobs  = self._schedule_head_of_list(current_time)
        jobs += self._backfill_jobs(current_time)
        return jobs


    def _schedule_head_of_list(self, current_time):
        result = []
        while True:
            if len(self.unscheduled_jobs) == 0:
                break
            # Try to schedule the first job
            if self.cpu_snapshot.free_processors_available_at(current_time) >= self.unscheduled_jobs[0].num_required_processors:
                job = self.unscheduled_jobs.pop(0)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
            else:
                # first job can't be scheduled
                break
        return result


    def _backfill_jobs(self, current_time):
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []
        first_job = self.unscheduled_jobs[0]
        tail =  list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)

        self.cpu_snapshot.assignJobEarliest(first_job, current_time)

        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time):
                job.is_backfilled = 1
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)

        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
class EasyPlusPlusScheduler(Scheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """
    def __init__(self, num_processors):
        super(EasyPlusPlusScheduler, self).__init__(num_processors)
        self.cpu_snapshot = CpuSnapshot(num_processors)
        self.unscheduled_jobs = []
        self.user_run_time_prev = {}
        self.user_run_time_last = {}

    def new_events_on_job_submission(self, job, current_time):
        if not self.user_run_time_last.has_key(job.user_id):
            self.user_run_time_prev[job.user_id] = None
            self.user_run_time_last[job.user_id] = None

        self.cpu_snapshot.archive_old_slices(current_time)
        self.unscheduled_jobs.append(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]

    def new_events_on_job_termination(self, job, current_time):
        assert self.user_run_time_last.has_key(job.user_id) == True
        assert self.user_run_time_prev.has_key(job.user_id) == True

        self.user_run_time_prev[job.user_id] = self.user_run_time_last[
            job.user_id]
        self.user_run_time_last[job.user_id] = job.actual_run_time
        self.cpu_snapshot.archive_old_slices(current_time)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]

    def new_events_on_job_under_prediction(self, job, current_time):
        assert job.predicted_run_time <= job.user_estimated_run_time

        self.cpu_snapshot.assignTailofJobToTheCpuSlices(job)
        job.predicted_run_time = job.user_estimated_run_time
        return []

    def _schedule_jobs(self, current_time):
        "Schedules jobs that can run right now, and returns them"

        for job in self.unscheduled_jobs:
            if self.user_run_time_prev[job.user_id] != None:
                average = int((self.user_run_time_last[job.user_id] +
                               self.user_run_time_prev[job.user_id]) / 2)
                job.predicted_run_time = min(job.user_estimated_run_time,
                                             average)

        jobs = self._schedule_head_of_list(current_time)
        jobs += self._backfill_jobs(current_time)
        return jobs

    def _schedule_head_of_list(self, current_time):
        result = []
        while True:
            if len(self.unscheduled_jobs) == 0:
                break
            # Try to schedule the first job
            if self.cpu_snapshot.free_processors_available_at(
                    current_time
            ) >= self.unscheduled_jobs[0].num_required_processors:
                job = self.unscheduled_jobs.pop(0)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
            else:
                # first job can't be scheduled
                break
        return result

    def _backfill_jobs(self, current_time):
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []
        first_job = self.unscheduled_jobs[0]
        tail = list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)

        self.cpu_snapshot.assignJobEarliest(first_job, current_time)

        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time):
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)

        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
예제 #9
0
class  EasyPlusPlusScheduler(Scheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """
    
    def __init__(self, num_processors):
        super(EasyPlusPlusScheduler, self).__init__(num_processors)
        self.cpu_snapshot = CpuSnapshot(num_processors)
        self.unscheduled_jobs = []
        self.user_run_time_prev = {}
        self.user_run_time_last = {}

    
    def new_events_on_job_submission(self, job, current_time):
        if not self.user_run_time_last.has_key(job.user_id): 
            self.user_run_time_prev[job.user_id] = None 
            self.user_run_time_last[job.user_id] = None

        self.cpu_snapshot.archive_old_slices(current_time)
        self.unscheduled_jobs.append(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]


    def new_events_on_job_termination(self, job, current_time):
        assert self.user_run_time_last.has_key(job.user_id) == True
        assert self.user_run_time_prev.has_key(job.user_id) == True

        self.user_run_time_prev[job.user_id] = self.user_run_time_last[job.user_id]
        self.user_run_time_last[job.user_id] = job.actual_run_time
        self.cpu_snapshot.archive_old_slices(current_time)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]


    def new_events_on_job_under_prediction(self, job, current_time):
        assert job.predicted_run_time <= job.user_estimated_run_time

        self.cpu_snapshot.assignTailofJobToTheCpuSlices(job)
        job.predicted_run_time = job.user_estimated_run_time
        return []


    def _schedule_jobs(self, current_time):
        "Schedules jobs that can run right now, and returns them"
   
        for job in self.unscheduled_jobs:
            if self.user_run_time_prev[job.user_id] != None: 
                average =  int((self.user_run_time_last[job.user_id] + self.user_run_time_prev[job.user_id])/ 2)
                job.predicted_run_time = min (job.user_estimated_run_time, average)

        jobs  = self._schedule_head_of_list(current_time)
        jobs += self._backfill_jobs(current_time)
        return jobs


    def _schedule_head_of_list(self, current_time):     
        result = []
        while True:
            if len(self.unscheduled_jobs) == 0:
                break
            # Try to schedule the first job
            if self.cpu_snapshot.free_processors_available_at(current_time) >= self.unscheduled_jobs[0].num_required_processors:
                job = self.unscheduled_jobs.pop(0)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
            else:
                # first job can't be scheduled
                break
        return result
    

    def _backfill_jobs(self, current_time):
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []  
        first_job = self.unscheduled_jobs[0]        
        tail =  list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)
        
        self.cpu_snapshot.assignJobEarliest(first_job, current_time)
        
        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time): 
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
                
        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result
예제 #10
0
class EasyPlusPlusScheduler(Scheduler):
    """ This algorithm implements the algorithm in the paper of Tsafrir, Etzion, Feitelson, june 2007?
    """

    I_NEED_A_PREDICTOR = True

    def __init__(self, options):
        super(EasyPlusPlusScheduler, self).__init__(options)
        self.init_predictor(options)
        self.init_corrector(options)

        self.cpu_snapshot = CpuSnapshot(self.num_processors, options["stats"])
        self.unscheduled_jobs = []

        self.ff = open("times-epp-sgd.txt", 'w')

    def new_events_on_job_submission(self, job, current_time):

        self.cpu_snapshot.archive_old_slices(current_time)
        self.predictor.predict(job, current_time, self.running_jobs)

        self.ff.write("%d\t%d\n" %
                      (job.actual_run_time, job.predicted_run_time))
        self.ff.flush()

        if not hasattr(job, "initial_prediction"):
            job.initial_prediction = job.predicted_run_time
        self.unscheduled_jobs.append(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]

    def new_events_on_job_termination(self, job, current_time):
        self.predictor.fit(job, current_time)

        if self.corrector.__name__ == "ninetynine":
            self.pestimator.fit(job.actual_run_time /
                                job.user_estimated_run_time)

        self.cpu_snapshot.archive_old_slices(current_time)
        self.cpu_snapshot.delTailofJobFromCpuSlices(job)
        return [
            JobStartEvent(current_time, job)
            for job in self._schedule_jobs(current_time)
        ]

    def new_events_on_job_under_prediction(self, job, current_time):
        assert job.predicted_run_time <= job.user_estimated_run_time

        if not hasattr(job, "num_underpredict"):
            job.num_underpredict = 0
        else:
            job.num_underpredict += 1

        if self.corrector.__name__ == "ninetynine":
            new_predicted_run_time = self.corrector(self.pestimator, job,
                                                    current_time)
        else:
            new_predicted_run_time = self.corrector(job, current_time)

        #set the new predicted runtime
        self.cpu_snapshot.assignTailofJobToTheCpuSlices(
            job, new_predicted_run_time)
        job.predicted_run_time = new_predicted_run_time

        return [JobStartEvent(current_time, job)]

    def _schedule_jobs(self, current_time):
        "Schedules jobs that can run right now, and returns them"

        jobs = self._schedule_head_of_list(current_time)
        jobs += self._backfill_jobs(current_time)
        return jobs

    def _schedule_head_of_list(self, current_time):
        result = []
        while True:
            if len(self.unscheduled_jobs) == 0:
                break
            # Try to schedule the first job
            if self.cpu_snapshot.free_processors_available_at(
                    current_time
            ) >= self.unscheduled_jobs[0].num_required_processors:
                job = self.unscheduled_jobs.pop(0)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)
            else:
                # first job can't be scheduled
                break
        return result

    def _backfill_jobs(self, current_time):
        if len(self.unscheduled_jobs) <= 1:
            return []

        result = []
        first_job = self.unscheduled_jobs[0]
        tail = list_copy(self.unscheduled_jobs[1:])
        tail_of_jobs_by_sjf_order = sorted(tail, key=sjf_sort_key)

        self.cpu_snapshot.assignJobEarliest(first_job, current_time)

        for job in tail_of_jobs_by_sjf_order:
            if self.cpu_snapshot.canJobStartNow(job, current_time):
                job.is_backfilled = 1
                self.unscheduled_jobs.remove(job)
                self.cpu_snapshot.assignJob(job, current_time)
                result.append(job)

        self.cpu_snapshot.delJobFromCpuSlices(first_job)

        return result