예제 #1
0
def show_fitting(args, N, data, country_name, params):

    dates = list(data.index)
    days = [int(i) for i in range(0, data.shape[0])]

    dates_all = dates + cu.get_dates(dates[-1], 30)

    #  get the prediction
    E = Epidemology(args.model_name, 'solve_ivp', data.shape[0] + 30)
    E.set_init(N, data[0], 0)
    sir = E.evolve(params)

    title = country_name  + r', $\beta_0$' +"=" + str('%.2f' %params[0])\
       + r', $\mu$= ' +  str('%.2f' % params[1]) \
       + r', $\gamma$= '+ str('%.2f' % params[2])

    t = cu.strip_year(dates)
    t_all = cu.strip_year(dates_all)

    fig = plt.figure(figsize=(15, 10))
    ax = fig.add_subplot(111)

    ax.plot(t_all, sir.y[1, :], c='r', label='Infected')
    ax.plot(t_all, sir.y[2, :], c='g', label='Recovered')
    plt.scatter(t, data.to_numpy(), c='b', label='Data')
    ax.set_yscale('log')
    ax.set_title(title)
    ax.legend()
    plt.setp(ax.get_xticklabels(), rotation=90, horizontalalignment='right')

    plot_dir = args.output_dir + os.sep + "plots"
    os.makedirs(plot_dir, exist_ok=True)
    plt.savefig(plot_dir + os.sep + country_name + ".pdf")
예제 #2
0
        print(count, row['date'], row['confirmed'], row['recovered'],
              row['deaths'])
        count += 1

    # let us get all the dates
    dates = df['date'].to_list()

    # add some future dates also
    dates_predict = dates + get_dates(dates[df.shape[0] - 1], args.num_predict)

    # get the days
    days = np.array([float(i) for i in range(0, len(dates))])
    days_predict = np.array([float(i) for i in range(0, len(dates_predict))])

    # let us get rid of the year for plotting
    dates_predict = strip_year(dates_predict)
    dates = strip_year(dates)

    # now let us iterate over the three columns
    cases = ["deaths", "recovered", "confirmed"]

    fig = plt.figure(figsize=(18, 18))

    ax = [plt.subplot(311)]
    ax.append(plt.subplot(312))
    ax.append(plt.subplot(313))

    num_days = len(days)

    for i in range(0, len(cases)):
        y = df[cases[i]].to_numpy()
예제 #3
0
    if end == 0:
        end = df.shape[0]

    x_fit = np.array(x[start:end] - x[start])
    y_fit = np.log(y[start:end])

    slope, intercept, r_value, p_value, std_err = stats.linregress(
        x_fit, y_fit)

    y_predict = intercept + slope * (x[start:] - x[start])

    date_str = get_file_name(dates, start, end)

    output_file = args.output_dir + os.sep + args.country + "_" + args.type + "_" + date_str + ".pdf"

    dates = strip_year(df['date'].to_list())
    fig = plt.figure()
    ax = fig.add_subplot()

    ax.set_title(args.type)
    ax.plot(x, np.log(y), 'o', label='data')
    ax.plot(x[start:], y_predict)
    ax.plot(x[start:], y_predict,'k-',\
       label='fit: a=%5.3f, b=%5.3f, fit window =[%d-%d]' % (intercept,slope,start,end))
    ax.legend(loc='upper center')
    ax.set_ylabel("log( " + args.type + " )")
    plt.setp(ax.get_xticklabels(), rotation=90, horizontalalignment='right')
    plt.savefig(output_file)
    print("output file:", output_file)
예제 #4
0
   dR = R.diff(periods=1).iloc[1:]
   I1 = I.iloc[1:]

   # equation (11) of arXiv:2003.00122v5
   beta1 = (dI + dR).divide(I1, fill_value=0)

   # For our reconstruction 
   N, L, T = lockdown_info (args.lockdown_file, args.country_name)
   R = BetaSolver(df, N)
   beta2 = R.solve(7.0, 7.0, 1.0).iloc[1:-2]


   fig = plt.figure(figsize=(18,12))
   ax = fig.add_subplot()  

   beta1.index = strip_year(beta1.index)
   beta2.index = strip_year(beta2.index)

   ax.plot(beta1,'o',c='b')
   ax.plot(beta1,label='Direct',c='b')
   ax.plot(beta2,label='Reconstructed',c='r')
   ax.plot(beta2,'o',c='r')
   ax.set_xlabel('t')
   ax.set_ylabel(r'$\beta (t)$')
   ax.set_title(args.country_name)
   plt.legend()
   ax.axhline(y=0,c='k',ls='--')
   plt.setp(ax.get_xticklabels(), rotation=90, horizontalalignment='right',fontsize=10)
   plt.show()