def load_data_set(data_set_type, classification_method): print("".join(["Loading ", data_set_type, " data set for ", classification_method, "..."])) try: data_set_file = classification_method + "_" if data_set_type == DatasetType.TRAINING: data_set_file += FilePath.TRAINING_DATA_SET_FILE_NAME else: data_set_file += FilePath.TEST_DATA_SET_FILE_NAME return pickle.load(open(os.path.join(FilePath.DATA_FOLDER, data_set_file), "rb")) except Exception as e: raise UnableToLoadDatasetException( "".join(["Unable to load: ", classification_method, " data set with cause: ", e.message, "\n"]))
def load_dataset(self, csv_file, one_hot, validation_size): """ Load a data set. Args: csv_file: a CSV file containing ground truth and file names. one_hot: a boolean. It True, will load the data set labels as a one-hot vector e.g. [0, 1, 0]. If False, will load the data set labels as integers. validation_size: the specified user's validation data set size. Returns: A DataSet object containing training and validation set. """ try: img_names, labels = self._read_labels(csv_file, one_hot) return self._create_datasets(img_names, labels, validation_size) except Exception as e: raise UnableToLoadDatasetException( "Unable to load galaxies data set with cause: " + str(e))
def load_dataset(self, csv_file, one_hot, validation_size): """ Load a data set. Args: csv_file: a CSV file containing ground truth and file names. feature_vector: a boolean. It True, will load the data set from a feature vector. If False, will load the data set required to extract song features. Returns: A DataSet object containing training and validation set. """ try: features, labels = self._read_labels(csv_file, one_hot) return self._create_datasets(features, labels, validation_size) except Exception as e: raise UnableToLoadDatasetException( "Unable to load music data set with cause: " + str(e))
def load_dataset(self, csv_file, one_hot, validation_size): """ Load a data set. Args: csv_file: a CSV file containing ground truth and file names. one_hot: a boolean. It True, will load the data set labels as a one-hot vector e.g. [0, 1, 0]. If False, will load the data set labels as integers. validation_size: the specified user's validation data set size. Returns: A tuple containing the feature vectors and labels associated to these vectors. """ try: features, labels = self._load_feature_vector(csv_file, one_hot) return self.create_datasets(features, labels, validation_size) except Exception as e: raise UnableToLoadDatasetException( "Unable to load galaxies data set with cause: " + str(e))
def load_dataset(self, csv_file, one_hot, validation_size): """ Load a data set. Args: csv_file: a CSV file containing ground truth and file names. feature_vector: a boolean. It True, will load the data set from a feature vector. If False, will load the data set required to extract galaxy image features. Returns: A tuple containing the feature vectors and labels associated to these vectors. """ try: feature_vectors, labels = self._load_feature_vector( csv_file, one_hot) return self._create_datasets(feature_vectors, labels, validation_size) except Exception as e: raise UnableToLoadDatasetException( "Unable to load spam data set with cause: " + str(e))