def run_from_file_paths(model_args, input_args): sess, input_photo, output_photo = model_args imgs, style_name, output_folder, progress_update, tmp = input_args for i, content_path in enumerate(imgs): img = get_img(content_path) img_shape = img.shape[:2] # Resize the smallest side of the image to the image_size alpha = float(image_size) / float(min(img_shape)) img = imresize(img, size=alpha) img = np.expand_dims(img, axis=0) img = sess.run(output_photo, feed_dict={ input_photo: normalize_arr_of_imgs(img), }) img = denormalize_arr_of_imgs(img[0]) img = imresize(img, size=img_shape) # generate output path content_name = os.path.basename(content_path) file_ext = os.path.splitext(content_name) output_path = os.path.join( output_folder, file_ext[0] + "-" + style_name + file_ext[1]) save_img(output_path, img) progress_update((tmp["completed"] + float(i + 1)) / tmp["tot"])
def run_from_file_paths(model_args, input_args): sess, generated_img, content_input, style_input = model_args alpha, content_images, style_images, output_folder, progress_update = input_args n_imgs = len(style_images) * len(content_images) for i, content_image in enumerate(content_images): content_image = get_img(content_image) for j, style_image in enumerate(style_images): style_image = get_img(style_image) content_tensor = np.expand_dims(content_image, axis=0) style_tensor = np.expand_dims(style_image, axis=0) result = sess.run( generated_img, feed_dict={ content_input: content_tensor, style_input: style_tensor }) # assemble the output file name style_img_split = os.path.splitext(os.path.basename(style_images[j])) content_img_split = os.path.splitext(os.path.basename(content_images[i])) output_image_path = content_img_split[0] + "-" + style_img_split[0] + content_img_split[1] output_image_path = os.path.join(output_folder, output_image_path) save_img(output_image_path, result[0]) # update the gimp progress bar curr_img = float(i * len(style_images) + (j + 1)) progress_update(curr_img / n_imgs)
def run_from_file_paths(model_args, input_args): sess, input_img_placeholder, preds = model_args imgs, style_name, output_folder, progress_update, tmp = input_args for i, content_path in enumerate(imgs): img = get_img(content_path) img = np.expand_dims(img, axis=0) img = sess.run(preds, feed_dict={ input_img_placeholder: img, }) img = np.clip(img[0], 0, 255).astype(np.uint8) # generate output path content_name = os.path.basename(content_path) file_ext = os.path.splitext(content_name) output_path = os.path.join( output_folder, file_ext[0] + "-" + style_name + file_ext[1]) save_img(output_path, img) progress_update((tmp["completed"] + float(i + 1)) / tmp["tot"])