def test_scenario1(self): """ Scenario: Successfully creating a local prediction from an Ensemble: Given I create a data source uploading a "<data>" file And I wait until the source is ready less than <time_1> secs And I create a dataset And I wait until the dataset is ready less than <time_2> secs And I create an ensemble of <number_of_models> models and <tlp> tlp And I wait until the ensemble is ready less than <time_3> secs And I create a local Ensemble When I create a local ensemble prediction with confidence for "<data_input>" Then the local prediction is "<prediction>" And the local prediction's confidence is "<confidence>" And the local probabilities are "<probabilities>" Examples: | data | time_1 | time_2 | time_3 | number_of_models | tlp | data_input |prediction | confidence | ../data/iris.csv | 10 | 10 | 50 | 5 | 1 | {"petal width": 0.5} | Iris-versicolor | 0.3687 | [0.3403, 0.4150, 0.2447] """ print self.test_scenario1.__doc__ examples = [ ['data/iris.csv', '10', '10', '50', '5', '1', '{"petal width": 0.5}', 'Iris-versicolor', '0.415', '["0.3403", "0.4150", "0.2447"]' ]] for example in examples: print "\nTesting with:\n", example source_create.i_upload_a_file(self, example[0]) source_create.the_source_is_finished(self, example[1]) dataset_create.i_create_a_dataset(self) dataset_create.the_dataset_is_finished_in_less_than(self, example[2]) ensemble_create.i_create_an_ensemble(self, example[4], example[5]) ensemble_create.the_ensemble_is_finished_in_less_than(self, example[3]) ensemble_create.create_local_ensemble(self) prediction_create.create_local_ensemble_prediction_with_confidence(self, example[6]) compare_pred.the_local_prediction_is(self, example[7]) compare_pred.the_local_prediction_confidence_is(self, example[8]) compare_pred.the_local_probabilities_are(self, example[9])
def test_scenario10(self): """ Scenario: Successfully comparing predictions with proportional missing strategy and balanced models: Given I create a data source uploading a "<data>" file And I wait until the source is ready less than <time_1> secs And I create a dataset And I wait until the dataset is ready less than <time_2> secs And I create a balanced model And I wait until the model is ready less than <time_3> secs And I create a local model When I create a proportional missing strategy prediction for "<data_input>" Then the prediction for "<objective>" is "<prediction>" And the confidence for the prediction is "<confidence>" And I create a proportional missing strategy local prediction for "<data_input>" Then the local prediction is "<prediction>" And the local prediction's confidence is "<confidence>" And I create local probabilities for "<data_input>" Then the local probabilities are "<probabilities>" Examples: | data | time_1 | time_2 | time_3 | data_input | objective | prediction | confidence | """ examples = [ [ 'data/iris_unbalanced.csv', '10', '10', '10', '{}', '000004', 'Iris-setosa', '0.25284', '[0.33333, 0.33333, 0.33333]' ], [ 'data/iris_unbalanced.csv', '10', '10', '10', '{"petal length":1, "sepal length":1, "petal width": 1, "sepal width": 1}', '000004', 'Iris-setosa', '0.7575', '[1.0, 0.0, 0.0]' ] ] show_doc(self.test_scenario10, examples) for example in examples: print "\nTesting with:\n", example source_create.i_upload_a_file(self, example[0]) source_create.the_source_is_finished(self, example[1]) dataset_create.i_create_a_dataset(self) dataset_create.the_dataset_is_finished_in_less_than( self, example[2]) model_create.i_create_a_balanced_model(self) model_create.the_model_is_finished_in_less_than(self, example[3]) prediction_compare.i_create_a_local_model(self) prediction_create.i_create_a_proportional_prediction( self, example[4]) prediction_create.the_prediction_is(self, example[5], example[6]) prediction_compare.i_create_a_proportional_local_prediction( self, example[4]) prediction_compare.the_local_prediction_is(self, example[6]) prediction_create.the_confidence_is(self, example[7]) prediction_compare.the_local_prediction_confidence_is( self, example[7]) prediction_compare.i_create_local_probabilities(self, example[4]) prediction_compare.the_local_probabilities_are(self, example[8])
def test_scenario10(self): """ Scenario: Successfully comparing predictions with proportional missing strategy and balanced models: Given I create a data source uploading a "<data>" file And I wait until the source is ready less than <time_1> secs And I create a dataset And I wait until the dataset is ready less than <time_2> secs And I create a balanced model And I wait until the model is ready less than <time_3> secs And I create a local model When I create a proportional missing strategy prediction for "<data_input>" Then the prediction for "<objective>" is "<prediction>" And the confidence for the prediction is "<confidence>" And I create a proportional missing strategy local prediction for "<data_input>" Then the local prediction is "<prediction>" And the local prediction's confidence is "<confidence>" And I create local probabilities for "<data_input>" Then the local probabilities are "<probabilities>" Examples: | data | time_1 | time_2 | time_3 | data_input | objective | prediction | confidence | """ examples = [ ['data/iris_unbalanced.csv', '10', '10', '10', '{}', '000004', 'Iris-setosa', '0.25284', '[0.33333, 0.33333, 0.33333]'], ['data/iris_unbalanced.csv', '10', '10', '10', '{"petal length":1, "sepal length":1, "petal width": 1, "sepal width": 1}', '000004', 'Iris-setosa', '0.7575', '[1.0, 0.0, 0.0]']] show_doc(self.test_scenario10, examples) for example in examples: print "\nTesting with:\n", example source_create.i_upload_a_file(self, example[0]) source_create.the_source_is_finished(self, example[1]) dataset_create.i_create_a_dataset(self) dataset_create.the_dataset_is_finished_in_less_than(self, example[2]) model_create.i_create_a_balanced_model(self) model_create.the_model_is_finished_in_less_than(self, example[3]) prediction_compare.i_create_a_local_model(self) prediction_create.i_create_a_proportional_prediction(self, example[4]) prediction_create.the_prediction_is(self, example[5], example[6]) prediction_compare.i_create_a_proportional_local_prediction(self, example[4]) prediction_compare.the_local_prediction_is(self, example[6]) prediction_create.the_confidence_is(self, example[7]) prediction_compare.the_local_prediction_confidence_is(self, example[7]) prediction_compare.i_create_local_probabilities(self, example[4]) prediction_compare.the_local_probabilities_are(self, example[8])