loads=['gravity', 'loads', 'pressure'],
                 displacements='pinned'),
    ModalStep(name='modal', modes=3),
])
mdl.steps_order = ['bc', 'loads', 'buckling', 'modal']

#print(mdl.steps['bc'])
#print(mdl.steps['loads'])
#print(mdl.steps['buckling'])
#print(mdl.steps['modal'])

#mdl.summary()

# Run

mdl.analyse_and_extract(software='abaqus', fields=['u', 's', 'rf', 'cf'])

rhino.plot_data(mdl, step='loads', field='um')
rhino.plot_data(mdl, step='loads', field='smaxp')
rhino.plot_data(mdl, step='loads', field='sminp')

rhino.plot_reaction_forces(mdl, step='loads', scale=0.1)
rhino.plot_concentrated_forces(mdl, step='loads', scale=0.1)

rhino.plot_mode_shapes(mdl, step='buckling', layer='buckling-')
rhino.plot_mode_shapes(mdl, step='modal', layer='modal-')

print(mdl.results['modal']['frequencies'])
print(mdl.results['modal']['masses'])
print(mdl.results['buckling']['info'])
예제 #2
0
#-------------------------------------------------------------------------------

# Steps
mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_fixed']),
    GeneralStep(name='step_load', loads=['load_point']),
])
mdl.steps_order = ['step_bc', 'step_load']
#-------------------------------------------------------------------------------

# Summary
mdl.summary()
#-------------------------------------------------------------------------------

# Run
mdl.analyse_and_extract(software='opensees',
                        fields=['u', 'sf', 'sm', 'cf', 'rf'])
#mdl.analyse_and_extract(software='abaqus', fields=['u', 'sf', 'cf', 'rf', 's'], components=['ux', 'uy', 'uz', 'rfx', 'rfy', 'rfz', 'cfx', 'cfy', 'cfz', 'sxx', 'syy', 'smises'])
#-------------------------------------------------------------------------------

rhino.plot_data(mdl, step='step_load', field='uz', radius=0.01, scale=1.0)

rhino.plot_data(mdl, step='step_load', field='sf1', radius=0.01, scale=1.0)
rhino.plot_data(mdl, step='step_load', field='sf2', radius=0.01, scale=1.0)
rhino.plot_data(mdl, step='step_load', field='sf3', radius=0.01, scale=1.0)

rhino.plot_reaction_forces(mdl, step='step_load', scale=1.0)
rhino.plot_concentrated_forces(mdl, step='step_load', scale=1.0)
#-------------------------------------------------------------------------------

#rhino.plot_data(mdl, step='step_load', field='uz', radius=0.01, scale=1.0)
               elset='elset_lines'))

# Displacements
boundary = network.leaves()
mdl.add(PinnedDisplacement(name='disp', nodes=boundary))

# Loads

mdl.add(PointLoad(name='load_weights', nodes='load_pts', z=-100))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp']),
    GeneralStep(name='step_load', loads='load_weights'),
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary

# mdl.summary()

# Run
exe = '/Applications/OpenSees3.2.1/OpenSees'
mdl.write_input_file('opensees', fields='u')
mdl.analyse('opensees', exe=exe, cpus=4, license='research')
mdl.extract_data('opensees', fields='u', steps='all', exe=exe)
mdl.analyse_and_extract(software='opensees', exe=exe, fields=['u'])

# print(mdl.results['step_load']['nodal']['um'][0])
예제 #4
0
                        nodes='nset_left',
                        yy=30 * pi / 180),
])

# Loads

mdl.add(PointLoad(name='load_weights', nodes='nset_weights', z=-100))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_left', 'disp_right']),
    GeneralStep(name='step_load',
                loads='load_weights',
                displacements='disp_rotate'),
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary

mdl.summary()

# Run

mdl.analyse_and_extract(software='abaqus', fields=['u', 'ur', 'sf', 'sm'])

rhino.plot_data(mdl, step='step_load', field='um', radius=0.01, cbar_size=0.3)
rhino.plot_data(mdl, step='step_load', field='sf1', radius=0.01, cbar_size=0.3)
rhino.plot_data(mdl, step='step_load', field='sf2', radius=0.01, cbar_size=0.3)
rhino.plot_data(mdl, step='step_load', field='sm1', radius=0.01, cbar_size=0.3)
예제 #5
0
# Displacements

mdl.add(PinnedDisplacement(name='disp_pinned', nodes='nset_supports'))

# Loads

mdl.add(PointLoad(name='load_point', nodes='nset_load', z=-1))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_pinned']),
    GeneralStep(name='step_load', loads=['load_point']),
])
mdl.steps_order = ['step_bc', 'step_load']

# Structure

mdl.summary()

# Run

mdl.analyse_and_extract(software='abaqus',
                        fields=['u', 's'],
                        components=['ux', 'uy', 'uz', 'smises'])

rhino.plot_data(mdl, step='step_load', field='smises', cbar=[0, 2])
#rhino.plot_voxels(mdl, step='step_load', field='smises', cbar=[0, 2], vdx=1./nz)

mdl.save_to_obj()
예제 #6
0
    Properties(name='ep_tets',
               material='mat_elastic',
               section='sec_solid',
               elsets='elset_tets'))

# Displacementss

mdl.add_displacement(PinnedDisplacement(name='disp_pinned', nodes='base'))

# Loads

mdl.add_load(PointLoad(name='load_top', nodes='top', y=1000, z=1000))

# Steps

mdl.add_steps([
    GeneralStep(name='step_bc', displacements=['disp_pinned']),
    GeneralStep(name='step_load', loads=['load_top'])
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary

mdl.summary()

# Run (Abaqus)

exe = '/home/al/abaqus/Commands/abaqus cae '
mdl.analyse_and_extract(software='abaqus', exe=exe, fields=['u'])
blender.plot_voxels(mdl, step='step_load', field='ux', vdx=0.01)
예제 #7
0
    PinnedDisplacement(name='disp_left', nodes='nset_left'),
    RollerDisplacementX(name='disp_right', nodes='nset_right'),
])

# Loads

mdl.add(PointLoad(name='load_point', nodes='nset_load', y=100, z=-300))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_left', 'disp_right']),
    GeneralStep(name='step_load',
                loads=['load_point'],
                tolerance=1,
                iterations=500),
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary

mdl.summary()

# Run

mdl.analyse_and_extract(software='ansys', fields=['u'])

rhino.plot_data(mdl, step='step_load', field='um')

mdl.save_to_obj()
예제 #8
0
# Displacements

mdl.add(FixedDisplacement(name='disp_pins', nodes=[0, 2, 8, 6]))

# Loads

mdl.add(PointLoad(name='load_v', nodes=[4], z=-1000))

# Steps

mdl.add(
    GeneralStep(name='step_bc_loads',
                displacements=['disp_pins'],
                loads=['load_v'],
                nlgeom=False))
mdl.steps_order = ['step_bc_loads']

# Summary

# mdl.summary()

# Run (Abaqus)

# mdl.analyse_and_extract(software='abaqus', fields=['u', 'rf'], license='research')

# Run (Ansys)

mdl.analyse_and_extract(software='ansys', fields=['sf'], license='research')

# print(mdl.get_nodal_results(step='step_loads', field='rfm', nodes='nset_pins'))
예제 #9
0
# Loads

mdl.add(GravityLoad(name='gravity', elements='all'))
mdl.add(PointLoad(name='load_points', nodes='lpts1', x=0, y=0, z=-1000))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_pin']),
    GeneralStep(name='step_load', loads=['gravity', 'load_points']),
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary

mdl.summary()

# Run

mdl.analyse_and_extract(software='ansys',
                        fields=['u', 's', 'sp', 'e', 'ss', 'rf'],
                        license='introductory')

rhino.plot_data(mdl, step='step_load', field='um', scale=1e4)
rhino.plot_data(mdl, step='step_load', field='szt')
rhino.plot_data(mdl, step='step_load', field='ps1t')
rhino.plot_data(mdl, step='step_load', field='sxzt')
rhino.plot_data(mdl, step='step_load', field='e1t')
rhino.plot_reaction_forces(mdl, step='step_load', layer=None, scale=1)
예제 #10
0
def compute_compas_fea(file_path, load_path, fea_engine='abaqus', recompute=True):
    """ Use abaqus (via compas_fea) to perform elastic FEA on the given frame
    under a given load case. If no load path is specified, elemental gravity
    will be assumbed to be applied.

    Parameters
    ----------
    file_path : string
        full path to the frame shape's json file.
    load_path : type
        full path to the load case's json file.

    Returns
    -------
    nD: dict
        Reactional nodal displacement
        key is the node id.
        value is
        (nodal_id, dx, dy, dz, theta_x, theta_y, theta_z).

    fR: dict
        Fixities reaction force, moment.
        key is the nodal id.
        value is [Fxyz, Mxyz] in the global axes.

    eR: dict
        Element-wise reaction force, moment (two ends).
        key is the element id.
        (Fxyz_1, Mxyz_1, Fxyz_2, Mxyz_2)

    """
    root_dir = os.path.dirname(os.path.abspath(__file__))
    temp_dir = os.path.join(root_dir, 'compas_fea-temp')
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    file_json_name = file_path.split(os.sep)[-1]
    file_name = file_json_name.split('.')[0]
    print('compas_fea initing: file name {}'.format(file_name))
    if not recompute:
        nD, fR, eR = parse_abaqus_result_json(file_name, temp_dir)
        return nD, fR, eR

    with open(file_path, 'r') as f:
        json_data = json.loads(f.read())
    load_json_data = {}
    if load_path:
        with open(load_path, 'r') as f:
            load_json_data = json.loads(f.read())

    # init an empty structure
    mdl = Structure(name=file_name, path=os.path.join(temp_dir, ''))

    # nodes
    mdl.add_nodes(nodes=parse_frame_nodes(json_data))

    # elements
    elements = parse_elements(json_data)

    # align local axes with conmech
    sc = stiffness_checker(json_file_path=file_path, verbose=False)
    e_rot_mats = sc.get_element_local2global_rot_matrices()
    assert len(e_rot_mats) == len(elements)
    for e, mat in zip(elements, e_rot_mats):
        # compas_fea local axis convention is differrent to the one used in conmech:
        # in compas_fea
        # 'ex' axis represents the cross-section’s major axis
        # 'ey' is the cross-section’s minor axis
        # 'ez' is the axis along the element
        # TODO: this numpy array to list conversion
        # is essential to make compas_fea work...
        ez = list(mat[0][0:3]) # conmech longitude axis
        ex = list(mat[1][0:3]) # conmech cross sec major axis
        ey = list(mat[2][0:3]) # conmech cross sec minor axis

        mdl.add_element(nodes=e,
                        type='BeamElement',
                        axes={'ex': ex, 'ey': ey, 'ez': ez})
        # print(mdl.elements[mdl.check_element_exists(nodes=e)])

    assert_equal(mdl.element_count(), len(elements))

    # Sets
    # just convenient aliases for referring to a group of elements
    mdl.add_set(name='elset_all', type='element', selection=list(range(mdl.element_count())))

    mdl.add_set(name='nset_all', type='node', selection=list(range(mdl.node_count())))

    fixities = parse_fixties(json_data)
    mdl.add_set(name='nset_fix', type='node', selection=[f[0] for f in fixities])

    if load_json_data:
        pt_loads, include_sw = parse_load_case(load_json_data)
        # mdl.add_set(name='nset_pt_load', type='node', selection=[l[0] for l in pt_loads])
    else:
        pt_loads = []
        include_sw = True
    if pt_loads:
        mdl.add_set(name='nset_v_load_all', type='node', selection=[pl[0] for pl in pt_loads])

    # Materials
    # Young’s modulus E [in units of Pa]
    # Poisson’s ratio v and density p [kg per cubic metre].
    mat_json = json_data['material_properties']
    mat_name = 'mat_' + mat_json['material_name']
    E_scale = parse_pressure_scale_conversion(mat_json['youngs_modulus_unit'])
    p_scale = parse_density_scale_conversion(mat_json['density_unit'])
    mdl.add(ElasticIsotropic(name=mat_name,
                             E=E_scale * mat_json['youngs_modulus'],
                             v=mat_json['poisson_ratio'],
                             p=p_scale * mat_json['density']))

    # G_scale = parse_pressure_scale_conversion(mat_json['shear_modulus_unit'])
    # print('{}, {}'.format(mdl.materials['mat_' + mat_json['material_name']].G, G_scale * mat_json['shear_modulus']))
    # assert_almost_equal(mdl.materials['mat_' + mat_json['material_name']].G['G'], G_scale * mat_json['shear_modulus'])
    # print('-----------material')
    # print(mdl.materials[mat_name])

    # Sections
    # SI units should be used, this includes the use of metres m for cross-section dimensions, not millimetres mm.
    sec_name = 'sec_circ'
    mdl.add(CircularSection(name=sec_name, r=parse_circular_cross_sec_radius(json_data)))

    # print('-----------cross section')
    # print(mdl.sections[sec_name])

    # Properties, associate material & cross sec w/ element sets
    mdl.add(Properties(name='ep_all', material=mat_name, section=sec_name, elset='elset_all'))

    # Displacements
    # pin supports
    for i, fix in enumerate(fixities):
        f_dof = []
        for j in range(6):
            if fix[j+1] == 1:
                f_dof.append(0)
            else:
                f_dof.append(None)
        mdl.add(GeneralDisplacement(name='disp_fix_'+str(i), nodes=[fix[0]], x=f_dof[0], y=f_dof[1], z=f_dof[2], xx=f_dof[3], yy=f_dof[4], zz=f_dof[5]))
    # print('-----------fixities')
    # for i in range(len(fixities)):
    #     print(mdl.displacements['disp_fix_'+str(i)])

    # Loads
    if pt_loads:
        mdl.add([PointLoad(name='load_v_'+str(i), nodes=[pl[0]],
                           x=pl[1], y=pl[2], z=pl[3],
                           xx=pl[4], yy=pl[5], zz=pl[6])
                 for i, pl in enumerate(pt_loads)])
        if include_sw:
            mdl.add(GravityLoad(name='load_gravity', elements='elset_all'))
    else:
        mdl.add(GravityLoad(name='load_gravity', elements='elset_all'))
    # print('-----------loads')
    # print(mdl.loads['load_gravity'])
    # for i in range(len(pt_loads)):
    #     print(mdl.loads['load_v_'+str(i)])

    # Steps
    loads_names = []
    if pt_loads:
        loads_names.extend(['load_v_'+str(i) for i in range(len(pt_loads))])
    if include_sw:
        loads_names.append('load_gravity')
    mdl.add([
        GeneralStep(name='step_bc', displacements=['disp_fix_'+str(i) for i in range(len(fixities))]),
        GeneralStep(name='step_loads', loads=loads_names)
        ])

    # a boundary condition step such as 'step_bc' above, should always be applied as the first step to prevent rigid body motion
    mdl.steps_order = ['step_bc', 'step_loads']

    # Summary
    mdl.summary()

    # Run
    # node
    # 'u': nodal displacement: ux, uy, uz, um (magnitude)
    # 'ur': nodal rotation
    # 'rf': reaction force
    # 'cf': concentrated force (external load)
    # 'cm': concentrated moment (external load)

    # element
    # 's': beam stress (conmech cannot compute this at
    # version 0.1.1)
    # For beam, the following values are evaluated
    # at the "integration point" 'ip1' (middle point)
    # and pts along the axis: 'sp3, sp7, sp11, sp15'
    # sxx: axial
    # syy: hoop
    # sxy: torsion
    # smises: Von Mises
    # smaxp: max principal
    # sminp: min principal

    # 'sf': beam section force
    # sf1: axial
    # sf2: shear x
    # sf3: shear y
    if fea_engine == 'abaqus':
        mdl.analyse_and_extract(software='abaqus', fields=['u', 'ur', 'rf', 'rm', 'sf'], ndof=6, output=True)
        nD, fR, eR = parse_abaqus_result_json(file_name, temp_dir)
    elif fea_engine == 'opensees':
        mdl.analyse_and_extract(software='opensees', fields=['u'], exe=OPENSEES_PATH, ndof=6, output=True, save=True)
        raise NotImplementedError('opensees from compas_fea is not fully supported at this moment...')

        nD = {}
        fR = {}
        eR = {}
        # nD = mdl.get_nodal_results(step='step_load', field='ux', nodes='nset_all')
        print(mdl.results)
    else:
        raise NotImplementedError('FEA engine not supported!')

    return nD, fR, eR
예제 #11
0
# Displacements

mdl.add([
    PinnedDisplacement(name='disp_pins', nodes='pins'),
    RollerDisplacementXZ(name='disp_roller', nodes='middle'),
])

# Loads

mdl.add(PointLoad(name='load_middle', nodes='middle', z=-500))

# Steps

mdl.add([
    GeneralStep(name='step_bc', displacements=['disp_pins', 'disp_roller']),
    GeneralStep(name='step_load', loads='load_middle'),
])
mdl.steps_order = ['step_bc', 'step_load']

# Summary`

mdl.summary()

# Run

mdl.analyse_and_extract(software='opensees', fields=['u', 'spf'], ndof=3)

rhino.plot_data(mdl, step='step_load', field='um', radius=0.02)
rhino.plot_data(mdl, step='step_load', field='spfx', radius=0.02)

print(mdl.get_element_results(step='step_load', field='spfx'))
예제 #12
0
                factor=1.5,
                increments=200)
])
mdl.steps_order = ['step_bc', 'step_loads']

# Summary

mdl.summary()

# Run (Sofistik)

mdl.write_input_file(software='sofistik')

# Run (Abaqus)

mdl.analyse_and_extract(software='abaqus', fields=['u', 's'])

rhino.plot_data(mdl,
                step='step_loads',
                field='um',
                radius=0.1,
                scale=10,
                colorbar_size=0.3)
rhino.plot_data(mdl,
                step='step_loads',
                field='smises',
                iptype='max',
                nodal='max',
                radius=0.1,
                colorbar_size=0.3)