e=e, w=w) # Deterministic Steady-State kstar = ((1 - delta * gamma) / (delta * beta))**( 1 / (beta - 1)) # determistic steady-state capital investment sstar = gamma * kstar + kstar**beta # deterministic steady-state wealth # Check Model Derivatives # dpcheck(model,sstar,kstar) ## SOLUTION # Solve Bellman Equation growth.solve() resid, s, v, k = growth.solution() # Plot Optimal Policy demo.figure('Optimal Investment Policy', 'Wealth', 'Investment') plt.plot(s, k.T) # Plot Value Function demo.figure('Value Function', 'Wealth', 'Value') plt.plot(s, v.T) # Plot Shadow Price Function demo.figure('Shadow Price Function', 'Wealth', 'Shadow Price') plt.plot(s, growth.Value(s, order=1).T) # Plot Residual demo.figure('Bellman Equation Residual', 'Wealth', 'Residual')
model = DPmodel(basis, reward, transition, bounds, i=['Low price', 'Average price', 'High Price'], x=['Current production'], discount=delta, q=q) # Check Model Derivatives # dpcheck(model,sstar,sstar) ## SOLUTION # Solve Bellman Equation model.solve() resid, s, v, x = model.solution() """ # Plot Optimal Policy figure plot(s,x) legend('Low Price','Average Price','High Price') legend('Location','Best') legend('boxoff') title('Optimal Production Policy') xlabel('Lagged Production')
reward, transition, bounds, i=['Low price', 'Average price', 'High Price'], x=['Current production'], discount=delta, q=q) # Check Model Derivatives # dpcheck(model,sstar,sstar) ## SOLUTION # Solve Bellman Equation model.solve() resid, s, v, x = model.solution() """ # Plot Optimal Policy figure plot(s,x) legend('Low Price','Average Price','High Price') legend('Location','Best') legend('boxoff') title('Optimal Production Policy') xlabel('Lagged Production') ylabel('Production')
qstar = sstar - (delta * alpha - 1) / (delta * beta) # steady-state action # Print Steady-States print('Steady States') print('\tStock = %5.2f' % sstar) print('\tHarvest = %5.2f' % qstar) # Check Model Derivatives # dpcheck(model,sstar,qstar) ## SOLUTION # Solve Bellman Equation model.solve() resid, s, v, q = model.solution() # Plot Optimal Policy demo.figure('Optimal Harvest Policy', 'Stock', 'Harvest') plt.plot(s, q.T) # Plot Value Function demo.figure('Value Function', 'Stock', 'Value') plt.plot(s, v.T) # Plot Shadow Price Function demo.figure('Shadow Price Function', 'Stock', 'Shadow Price') plt.plot(s, model.Value(s, 1).T) # Plot Residual demo.figure('Bellman Equation Residual','Stock', 'Residual')
sstar = (alpha**2 - 1 / delta**2) / (2 * beta) # steady-state stock qstar = sstar - (delta * alpha - 1) / (delta * beta) # steady-state action # Print Steady-States print('Steady States') print('\tStock = %5.2f' % sstar) print('\tHarvest = %5.2f' % qstar) # Check Model Derivatives # dpcheck(model,sstar,qstar) ## SOLUTION # Solve Bellman Equation model.solve() resid, s, v, q = model.solution() # Plot Optimal Policy demo.figure('Optimal Harvest Policy', 'Stock', 'Harvest') plt.plot(s, q.T) # Plot Value Function demo.figure('Value Function', 'Stock', 'Value') plt.plot(s, v.T) # Plot Shadow Price Function demo.figure('Shadow Price Function', 'Stock', 'Shadow Price') plt.plot(s, model.Value(s, 1).T) # Plot Residual demo.figure('Bellman Equation Residual', 'Stock', 'Residual')
x=['investment'], discount=delta, e=e, w=w) # Deterministic Steady-State kstar = ((1 - delta * gamma) / (delta * beta)) ** (1 / (beta - 1)) # determistic steady-state capital investment sstar = gamma * kstar + kstar ** beta # deterministic steady-state wealth # Check Model Derivatives # dpcheck(model,sstar,kstar) ## SOLUTION # Solve Bellman Equation growth.solve() resid, s, v, k = growth.solution() # Plot Optimal Policy demo.figure('Optimal Investment Policy', 'Wealth', 'Investment') plt.plot(s, k.T) # Plot Value Function demo.figure('Value Function', 'Wealth', 'Value') plt.plot(s, v.T) # Plot Shadow Price Function demo.figure('Shadow Price Function', 'Wealth', 'Shadow Price') plt.plot(s, growth.Value(s, order=1).T)