help='Detector configuration [IT73|IT81]') p.add_argument( '-o', '--outdir', dest='outdir', default='/home/jbourbeau/public_html/figures/ShowerLLH/qualitycuts', help='Output directory') p.add_argument('-b', '--bintype', dest='bintype', default='logdist', choices=['standard', 'nozenith', 'logdist'], help='Option for a variety of preset bin values') args = p.parse_args() sim_reco = load_sim(config=args.config, bintype=args.bintype) standard_mask = sim_reco['cuts']['llh'] eff_area, eff_area_error, energy_midpoints = get_effective_area( sim_reco, standard_mask, args.bintype) # Plot effective area fig, ax = plt.subplots() ax.errorbar(energy_midpoints, eff_area, yerr=eff_area_error, marker='.') intercept = line_fit(eff_area, eff_area_error, energy_midpoints) print('Maximum effective area = {}'.format(intercept)) high_energy_mask = (energy_midpoints >= 10**6.2) high_energies = energy_midpoints[high_energy_mask] ax.plot([high_energies[0], high_energies[-1]], [intercept, intercept], marker='None', linestyle='-', color='k')
'--classifier', dest='classifier', default='RF', choices=['RF', 'KN'], help='Option to specify classifier used') p.add_argument('--outdir', dest='outdir', default='/home/jbourbeau/public_html/figures/composition', help='Output directory') args = p.parse_args() # Throughout this code, X will represent features while y will represent # class labels # Load and preprocess training data df = load_sim() feature_list = np.array([ 'reco_log_energy', 'ShowerPlane_cos_zenith', 'InIce_log_charge', 'NChannels', 'NStations', 'reco_radius', 'reco_InIce_containment', 'log_s125' ]) num_features = len(feature_list) X_train_std, X_test_std, y_train, y_test = get_train_test_sets( df, feature_list) pipeline = get_pipeline(args.classifier) train_sizes, train_scores, test_scores =\ learning_curve(estimator=pipeline, X=X_train_std, y=y_train,
p.add_argument('-e', '--energy', dest='energy', default='MC', choices=['MC', 'reco'], help='Option for a variety of preset bin values') p.add_argument('--extended', dest='extended', default=False, action='store_true', help='Use extended energy range') args = p.parse_args() checkdir(args.outdir + '/') # Import ShowerLLH sim reconstructions and cuts to be made df, cut_dict = load_sim(return_cut_dict=True) selection_mask = np.array([True] * len(df)) standard_cut_keys = [ 'reco_exists', 'reco_zenith', 'reco_IT_containment', 'IceTopMaxSignalInEdge', 'IceTopMaxSignal', 'NChannels', 'LF_InIce_containment' ] # standard_cut_keys = ['reco_exists', 'reco_zenith', 'reco_IT_containment', # 'IceTopMaxSignalInEdge', 'IceTopMaxSignal', 'NChannels', 'InIce_containment'] for key in standard_cut_keys: selection_mask *= cut_dict[key] df = df[selection_mask] MC_proton_mask = (df.MC_comp == 'P') MC_iron_mask = (df.MC_comp == 'Fe')