# parse parameters datasetDir = sys.argv[1] assert os.path.isdir( datasetDir), 'Error <datasetDir>=%s does not exist' % datasetDir if len(sys.argv) > 2: outputDir = sys.argv[2] else: # default outputDir = os.path.join(datasetDir, 'results') # path2data testData_pathToCalib = os.path.join(datasetDir, 'testing/calib') outputDir_perspective = os.path.join(outputDir, 'baseline_perspective_test') outputDir_bev = os.path.join(outputDir, 'baseline_bev_test') # Run computeBaseline script to generate example classification results on testing set # Replace by your algorithm to generate real results trainDir = os.path.join(datasetDir, 'training') testDir = os.path.join(datasetDir, 'testing') computeBaseline.main(trainDir, testDir, outputDir_perspective) # Convert baseline in perspective space into BEV space # If your algorithm provides results in perspective space, # you need to run this script before submission! inputFiles = os.path.join(outputDir_perspective, '*.png') transform2BEV.main(inputFiles, testData_pathToCalib, outputDir_bev) # now zip the contents in the directory 'outputDir_bev' and upload # the zip file to the KITTI server
datasetDir = sys.argv[1] assert os.path.isdir(datasetDir), 'Error <datasetDir>=%s does not exist' %datasetDir if len(sys.argv)>2: outputDir = sys.argv[2] else: # default outputDir = os.path.join(datasetDir, 'results') # path2data testData_pathToCalib = os.path.join(datasetDir, 'testing/calib') outputDir_perspective = os.path.join(outputDir, 'baseline_perspective_test') outputDir_bev = os.path.join(outputDir, 'baseline_bev_test') # Run computeBaseline script to generate example classification results on testing set # Replace by your algorithm to generate real results trainDir = os.path.join(datasetDir, 'training') testDir = os.path.join(datasetDir, 'testing') computeBaseline.main(trainDir, testDir, outputDir_perspective) # Convert baseline in perspective space into BEV space # If your algorithm provides results in perspective space, # you need to run this script before submission! inputFiles = os.path.join(outputDir_perspective, '*.png') transform2BEV.main(inputFiles, testData_pathToCalib, outputDir_bev) # now zip the contents in the directory 'outputDir_bev' and upload # the zip file to the KITTI server