예제 #1
0
    # parse parameters
    datasetDir = sys.argv[1]
    assert os.path.isdir(
        datasetDir), 'Error <datasetDir>=%s does not exist' % datasetDir
    if len(sys.argv) > 2:
        outputDir = sys.argv[2]
    else:
        # default
        outputDir = os.path.join(datasetDir, 'results')

    # path2data
    testData_pathToCalib = os.path.join(datasetDir, 'testing/calib')
    outputDir_perspective = os.path.join(outputDir,
                                         'baseline_perspective_test')
    outputDir_bev = os.path.join(outputDir, 'baseline_bev_test')

    # Run computeBaseline script to generate example classification results on testing set
    # Replace by your algorithm to generate real results
    trainDir = os.path.join(datasetDir, 'training')
    testDir = os.path.join(datasetDir, 'testing')
    computeBaseline.main(trainDir, testDir, outputDir_perspective)

    # Convert baseline in perspective space into BEV space
    # If your algorithm provides results in perspective space,
    # you need to run this script before submission!
    inputFiles = os.path.join(outputDir_perspective, '*.png')
    transform2BEV.main(inputFiles, testData_pathToCalib, outputDir_bev)

    # now zip the contents in the directory 'outputDir_bev' and upload
    # the zip file to the KITTI server
    datasetDir = sys.argv[1]
    assert os.path.isdir(datasetDir), 'Error <datasetDir>=%s does not exist' %datasetDir
    if len(sys.argv)>2:
        outputDir = sys.argv[2]   
    else:
        # default
        outputDir = os.path.join(datasetDir, 'results')
    
    # path2data
    testData_pathToCalib = os.path.join(datasetDir, 'testing/calib')
    outputDir_perspective = os.path.join(outputDir, 'baseline_perspective_test')
    outputDir_bev = os.path.join(outputDir, 'baseline_bev_test')
    
    # Run computeBaseline script to generate example classification results on testing set
    # Replace by your algorithm to generate real results
    trainDir = os.path.join(datasetDir, 'training')
    testDir = os.path.join(datasetDir, 'testing')
    computeBaseline.main(trainDir, testDir, outputDir_perspective)
    
    # Convert baseline in perspective space into BEV space
    # If your algorithm provides results in perspective space,
    # you need to run this script before submission!
    inputFiles = os.path.join(outputDir_perspective, '*.png')
    transform2BEV.main(inputFiles, testData_pathToCalib, outputDir_bev)

    # now zip the contents in the directory 'outputDir_bev' and upload
    # the zip file to the KITTI server