def test_consistency(version_space,labels,features): print(cl.count_of_T(h_1)) for boundaries in version_space: for h in boundaries: # print(h) for idx,label in enumerate(labels): cnstncy = cl.consistency(h,cl.get_data(features,idx)) # print(label) print(cnstncy==label) # print(cnstncy) # print(label) print(h) print(cl.get_data(features,idx))
def test_consistency(version_space, labels, features): print(cl.count_of_T(h_1)) for boundaries in version_space: for h in boundaries: # print(h) for idx, label in enumerate(labels): cnstncy = cl.consistency(h, cl.get_data(features, idx)) # print(label) print(cnstncy == label) # print(cnstncy) # print(label) print(h) print(cl.get_data(features, idx))
print(h) print(cl.get_data(features,idx)) sky = ("sunny","sunny","rainy","sunny") temp = ("warm","warm","cold","warm") humid = ("normal","high","high","high") wind = ("strong","strong","strong","strong") forecast = ("same","same","change","change") enjoysport = (True,True,False,False) examples = [sky,temp,humid,wind,forecast,enjoysport] features = examples[:-1] labels = examples[-1] domains = cl.get_domains(features) data = cl.get_data(features,3) #print("min_specializations") #print("domains: ",domains) #print("data: ",data) #cl.min_specializations() #cl.candidate_elimination(examples) #Implement a function min_specializations(h, domains, x) for a hypothesis h and an #example x. The argument domains is a list of lists, in which the i-th sub-list contains the possible #values of feature i. The function should return all minimal specializations of h with respect to #domains which are not fulfilled by x. Example output: #cl.min_specializations() dummy_h = ("?","warm","strong","change") specializations = cl.min_specializations(dummy_h,domains,data) #print("hypthesis: ", dummy_h) #print("specializations: ",specializations)
print(cl.get_data(features, idx)) sky = ("sunny", "sunny", "rainy", "sunny") temp = ("warm", "warm", "cold", "warm") humid = ("normal", "high", "high", "high") wind = ("strong", "strong", "strong", "strong") forecast = ("same", "same", "change", "change") enjoysport = (True, True, False, False) examples = [sky, temp, humid, wind, forecast, enjoysport] features = examples[:-1] labels = examples[-1] domains = cl.get_domains(features) data = cl.get_data(features, 3) #print("min_specializations") #print("domains: ",domains) #print("data: ",data) #cl.min_specializations() #cl.candidate_elimination(examples) #Implement a function min_specializations(h, domains, x) for a hypothesis h and an #example x. The argument domains is a list of lists, in which the i-th sub-list contains the possible #values of feature i. The function should return all minimal specializations of h with respect to #domains which are not fulfilled by x. Example output: #cl.min_specializations() dummy_h = ("?", "warm", "strong", "change") specializations = cl.min_specializations(dummy_h, domains, data) #print("hypthesis: ", dummy_h) #print("specializations: ",specializations)