예제 #1
0
from conceptors.net import ConceptorNetwork;
from conceptors.dataset import read_jpv_data;
from conceptors.dataset import normalize_jap_data;
from conceptors.dataset import transform_jap_data;

train_inputs, train_outputs, test_inputs, test_outputs=read_jpv_data("/home/arlmaster/workspace/conceptors/conceptors/data/ae.train",
                                                                     "/home/arlmaster/workspace/conceptors/conceptors/data/ae.test");
                                                                     
                                                                     
train_data, shifts, scales=normalize_jap_data(train_inputs);
test_data=transform_jap_data(test_inputs, shifts, scales);



# Create conceptor network
net=ConceptorNetwork(2, 200);

# Prepare testing data
p1=np.asarray(xrange(2000));
p1=np.sin(2*np.pi*p1/np.sqrt(75));
p2=np.asarray(xrange(2000));
#p2=0.5*np.sin(2*np.pi*p2/np.sqrt(20))+np.sin(2*np.pi*p2/np.sqrt(40));
p2=np.sin(2*np.pi*p2/np.sqrt(40));
ps=np.vstack((p1[None], p2[None]));

p=[];
p.append(ps);
#p.append(p1[None]);
#p.append(p2[None]);

# training
예제 #2
0
    if not x_temp.size:
      x_temp=Xtrain[idx,1:];
    else:
      x_temp=np.vstack((x_temp, Xtrain[idx,1:]));
      
    idx+=1;
    
  print "Class %i is generated" % i;
    
  X.append(x_temp.T);


n_in=X[0].shape[0];
num_neuron=500;
net=ConceptorNetwork(num_in=n_in,
                     num_neuron=num_neuron,
                     washout_length=200,
                     learn_length=700);
                     
print "the network is created";

net.train(X);

print "the network is trained";

conceptors=net.Cs[0];

img=Xtest[1];

pos_evidence=np.zeros((1, len(conceptors)));
for i in xrange(len(conceptors)):
  
예제 #3
0
from conceptors.net import ConceptorNetwork;
from conceptors.dataset import read_jpv_data;
from conceptors.dataset import normalize_jap_data;
from conceptors.dataset import transform_jap_data;

#train_inputs, train_outputs, test_inputs, test_outputs=read_jpv_data("/home/arlmaster/workspace/conceptors/conceptors/data/ae.train",
#                                                                     "/home/arlmaster/workspace/conceptors/conceptors/data/ae.test");
                                                                     
                                                                     
#train_data, shifts, scales=normalize_jap_data(train_inputs);
#test_data=transform_jap_data(test_inputs, shifts, scales);



# Create conceptor network
net=ConceptorNetwork(2, 200);

# Prepare testing data
p1=np.asarray(xrange(2000));
p1=np.sin(2*np.pi*p1/np.sqrt(75));
p2=np.asarray(xrange(2000));
#p2=0.5*np.sin(2*np.pi*p2/np.sqrt(20))+np.sin(2*np.pi*p2/np.sqrt(40));
p2=np.sin(2*np.pi*p2/np.sqrt(40));
ps=np.vstack((p1[None], p2[None]));

p=[];
p.append(ps);
#p.append(p1[None]);
#p.append(p2[None]);

# training
예제 #4
0
    while idx != num_train and Xtrain[idx, 0] == i:
        if not x_temp.size:
            x_temp = Xtrain[idx, 1:]
        else:
            x_temp = np.vstack((x_temp, Xtrain[idx, 1:]))

        idx += 1

    print "Class %i is generated" % i

    X.append(x_temp.T)

n_in = X[0].shape[0]
num_neuron = 500
net = ConceptorNetwork(num_in=n_in,
                       num_neuron=num_neuron,
                       washout_length=200,
                       learn_length=700)

print "the network is created"

net.train(X)

print "the network is trained"

conceptors = net.Cs[0]

img = Xtest[1]

pos_evidence = np.zeros((1, len(conceptors)))
for i in xrange(len(conceptors)):