def calculate(self, structure, **kwargs): """Calculate the descriptor for the given ASE structure. Parameters: structure: `ase.Atoms` object Atomic structure. """ atoms = scale_structure( structure, scaling_type=self.atoms_scaling, atoms_scaling_cutoffs=self.atoms_scaling_cutoffs) # Source src = condor.Source(**self.param_source) # Detector det = condor.Detector(**self.param_detector) # Atoms atomic_numbers = map(lambda el: el.number, atoms) atomic_numbers = [ atomic_number + 2 for atomic_number in atomic_numbers ] # convert Angstrom to m (CONDOR uses meters) atomic_positions = map( lambda pos: [pos.x * 1E-10, pos.y * 1E-10, pos.z * 1E-10], atoms) intensity_rgb = [] rs_rgb = [] ph_rgb = [] real_space = None phases = None for [_, rot_matrices] in iteritems(self.rot_matrices): # loop over channels intensity_channel = [] rs_channel = [] ph_channel = [] for rot_matrix in rot_matrices: # loop over the rotation matrices in a given channel # and sum the intensities in the same channel quaternion = condor.utils.rotation.quat_from_rotmx(rot_matrix) rotation_values = np.array([quaternion]) rotation_formalism = 'quaternion' rotation_mode = 'intrinsic' par = condor.ParticleAtoms( atomic_numbers=atomic_numbers, atomic_positions=atomic_positions, rotation_values=rotation_values, rotation_formalism=rotation_formalism, rotation_mode=rotation_mode) s = 'particle_atoms' condor_exp = condor.Experiment(src, {s: par}, det) res = condor_exp.propagate() # retrieve results real_space = np.fft.fftshift( np.fft.ifftn( np.fft.fftshift( res["entry_1"]["data_1"]["data_fourier"]))) intensity = res["entry_1"]["data_1"]["data"] fourier_space = res["entry_1"]["data_1"]["data_fourier"] phases = np.angle(fourier_space) % (2 * np.pi) if self.use_mask: # set to zero values outside a ring-like mask xc = (self.n_px - 1.0) / 2.0 yc = (self.n_py - 1.0) / 2.0 n = self.n_px a, b = xc, yc x, y = np.ogrid[-a:n - a, -b:n - b] mask_int = x * x + y * y <= self.mask_r_min * self.mask_r_min mask_ext = x * x + y * y >= self.mask_r_max * self.mask_r_max for i in range(self.n_px): for j in range(self.n_py): if mask_int[i, j]: intensity[i, j] = 0.0 if mask_ext[i, j]: intensity[i, j] = 0.0 intensity_channel.append(intensity) rs_channel.append(real_space.real) ph_channel.append(phases) # first sum the angles within the channel, then normalize intensity_channel = np.asarray(intensity_channel).sum(axis=0) rs_channel = np.asarray(rs_channel).sum(axis=0) ph_channel = np.asarray(ph_channel).sum(axis=0) # append normalized data from different channels # and divide by the angles per channel intensity_rgb.append(intensity_channel) rs_rgb.append(rs_channel) ph_rgb.append(ph_channel) intensity_rgb = np.asarray(intensity_rgb) intensity_rgb = (intensity_rgb - intensity_rgb.min()) / ( intensity_rgb.max() - intensity_rgb.min()) rs8 = (((real_space.real - real_space.real.min()) / (real_space.real.max() - real_space.real.min())) * 255.0).astype(np.uint8) ph8 = (((phases - phases.min()) / (phases.max() - phases.min())) * 255.0).astype(np.uint8) # reshape to have nb of color channels last intensity_rgb = intensity_rgb.reshape(intensity_rgb.shape[1], intensity_rgb.shape[2], intensity_rgb.shape[0]) # add results in ASE structure info descriptor_data = dict(descriptor_name=self.name, descriptor_info=str(self), diffraction_2d_intensity=intensity_rgb, diffraction_2d_real_space=rs8, diffraction_2d_phase=ph8) structure.info['descriptor'] = descriptor_data return structure
Z = numpy.concatenate((Z1.ravel(), Z2.ravel())) Y = numpy.concatenate((Y1.ravel(), Y2.ravel())) X = numpy.concatenate((X1.ravel(), X2.ravel())) proj = numpy.zeros(shape=(N_long, N_long)) dx = long_diameter / (N_long - 1) for (x, y, z) in zip(X.ravel(), Y.ravel(), Z.ravel()): proj[int(round(y / dx)), int(round(x / dx))] += 1 if plotting: pypl.imsave(out_dir + "/%s_proj.png" % (s), proj) atomic_positions = numpy.array( [[x, y, z] for x, y, z in zip(X.ravel(), Y.ravel(), Z.ravel())]) atomic_numbers = numpy.ones(int(atomic_positions.size / 3), dtype=numpy.int16) par = condor.ParticleAtoms(atomic_positions=atomic_positions, atomic_numbers=atomic_numbers, rotation_values=rotation_values, rotation_formalism=rotation_formalism, rotation_mode=rotation_mode) s = "particle_atoms" E = condor.Experiment(src, {s: par}, det) res = E.propagate() if plotting: real_space = numpy.fft.fftshift( numpy.fft.ifftn( numpy.fft.fftshift( res["entry_1"]["data_1"]["data_fourier"]))) fourier_space = res["entry_1"]["data_1"]["data_fourier"] vmin = numpy.log10(res["entry_1"]["data_1"]["data"].max() / 10000.) pypl.imsave(out_dir + "/%s_%2.2f.png" % (s, angle_d), numpy.log10(res["entry_1"]["data_1"]["data"]), vmin=vmin)
logger = logging.getLogger("condor") #logger.setLevel("DEBUG") logger.setLevel("WARNING") #logger.setLevel("INFO") N = 1 rotation_formalism="random" rotation_values = None # Source src = condor.Source(wavelength=1E-10, pulse_energy=1E-3, focus_diameter=1001E-9) # Detector det = condor.Detector(distance=0.2, pixel_size=800E-6, nx=250, ny=250) # Map #print("Simulating map") par = condor.ParticleAtoms(pdb_filename="%s/../../DNA.pdb" % this_dir, rotation_formalism=rotation_formalism, rotation_values=rotation_values) s = "particle_atoms" E = condor.Experiment(src, {s : par}, det) W = condor.utils.cxiwriter.CXIWriter("./condor.cxi") for i in range(N): t = time.time() res = E.propagate() #print(time.time()-t) if plotting: real_space = numpy.fft.fftshift(numpy.fft.ifftn(res["entry_1"]["data_1"]["data_fourier"])) pypl.imsave(this_dir + "/%i.png" % (i), numpy.log10(res["entry_1"]["data_1"]["data"])) pypl.imsave(this_dir + "/%i_rs.png" % (i), abs(real_space)) W.write(res) W.close()
do_plot = False if do_plot: import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot from matplotlib.colors import LogNorm src = condor.Source(wavelength=0.1E-10, pulse_energy=1E-3, focus_diameter=1E-6) ds = 16 det = condor.Detector(distance=2., pixel_size=110E-6*ds, nx=1024/ds+1, ny=1024/ds+1, solid_angle_correction=False) psphere = {"particle_sphere": condor.ParticleSphere(diameter=1E-9, material_type="water")} pmap = {"particle_map": condor.ParticleMap(diameter=1E-9, material_type="water", geometry="icosahedron")} patoms = {"particle_atoms": condor.ParticleAtoms(pdb_filename="%s/../../DNA.pdb" % this_dir)} particles = [psphere, pmap, patoms] if do_plot: fig, (axs1, axs2) = pyplot.subplots(2, len(particles), figsize=(3*len(particles), 3*2)) for i,par in enumerate(particles): E = condor.Experiment(src, par, det) res = E.propagate() data = res["entry_1"]["data_1"]["data"] if do_plot: axs1[i].set_title("2D: " + par.keys()[0]) lims = (data.min(), data.max()) axs1[i].imshow(data, norm=LogNorm(lims[0], lims[1]), cmap="gnuplot")
def test_compare_atoms_with_map(tolerance=0.1): """ Compare the output of two diffraction patterns, one simulated with descrete atoms (spsim) and the other one from a 3D refractive index map on a regular grid. """ src = condor.Source(wavelength=0.1E-9, pulse_energy=1E-3, focus_diameter=1E-6) det = condor.Detector(distance=0.5, pixel_size=750E-6, nx=100, ny=100, cx=45, cy=59) angle_d = 72. angle = angle_d / 360. * 2 * numpy.pi rotation_axis = numpy.array([0.43, 0.643, 0.]) rotation_axis = rotation_axis / condor.utils.linalg.length(rotation_axis) quaternion = condor.utils.rotation.quat(angle, rotation_axis[0], rotation_axis[1], rotation_axis[2]) rotation_values = numpy.array([quaternion]) rotation_formalism = "quaternion" rotation_mode = "extrinsic" short_diameter = 25E-9 * 12 / 100. long_diameter = 2 * short_diameter N_long = 20 N_short = int(round(short_diameter / long_diameter * N_long)) dx = long_diameter / (N_long - 1) massdensity = condor.utils.material.get_atomic_mass( "H") * scipy.constants.value("atomic mass constant") / dx**3 # Map map3d = numpy.zeros(shape=(N_long, N_long, N_long)) map3d[:N_short, :, :N_short] = 1. map3d[N_short:N_short + N_short, :N_short, :N_short] = 1. par = condor.ParticleMap(diameter=long_diameter, material_type="custom", massdensity=massdensity, atomic_composition={"H": 1.}, geometry="custom", map3d=map3d, dx=dx, rotation_values=rotation_values, rotation_formalism=rotation_formalism, rotation_mode=rotation_mode) s = "particle_map_custom" E = condor.Experiment(src, {s: par}, det) res = E.propagate() F_map = res["entry_1"]["data_1"]["data_fourier"] # Atoms Z1, Y1, X1 = numpy.meshgrid(numpy.linspace(0, short_diameter, N_short), numpy.linspace(0, long_diameter, N_long), numpy.linspace(0, short_diameter, N_short), indexing="ij") Z2, Y2, X2 = numpy.meshgrid(numpy.linspace(0, short_diameter, N_short) + long_diameter / 2., numpy.linspace(0, short_diameter, N_short), numpy.linspace(0, short_diameter, N_short), indexing="ij") Z = numpy.concatenate((Z1.ravel(), Z2.ravel())) Y = numpy.concatenate((Y1.ravel(), Y2.ravel())) X = numpy.concatenate((X1.ravel(), X2.ravel())) atomic_positions = numpy.array( [[x, y, z] for x, y, z in zip(X.ravel(), Y.ravel(), Z.ravel())]) atomic_numbers = numpy.ones(atomic_positions.size // 3, dtype=numpy.int16) par = condor.ParticleAtoms(atomic_positions=atomic_positions, atomic_numbers=atomic_numbers, rotation_values=rotation_values, rotation_formalism=rotation_formalism, rotation_mode=rotation_mode) s = "particle_atoms" E = condor.Experiment(src, {s: par}, det) res = E.propagate() F_atoms = res["entry_1"]["data_1"]["data_fourier"] # Compare I_atoms = abs(F_atoms)**2 I_map = abs(F_map)**2 diff = I_atoms - I_map err = abs(diff).sum() / ((I_atoms.sum() + I_map.sum()) / 2.) if SAVE_OUTPUT: import matplotlib.pyplot as pypl pypl.imsave("./Iatoms_mol.png", abs(I_atoms)) pypl.imsave("./Iatoms_map.png", abs(I_map)) assert err < tolerance
#logger.setLevel("INFO") N = 1 rotation_formalism = "random" rotation_values = None # Source src = condor.Source(wavelength=1E-10, pulse_energy=1E-3, focus_diameter=1001E-9) # Detector det = condor.Detector(distance=0.2, pixel_size=800E-6, nx=250, ny=250) # Map #print("Simulating map") par = condor.ParticleAtoms(pdb_id="1AKI", rotation_formalism=rotation_formalism, rotation_values=rotation_values) s = "particle_atoms" E = condor.Experiment(src, {s: par}, det) W = condor.utils.cxiwriter.CXIWriter("./condor.cxi") for i in range(N): t = time.time() res = E.propagate() #print(time.time()-t) if plotting: real_space = numpy.fft.fftshift( numpy.fft.ifftn(res["entry_1"]["data_1"]["data_fourier"])) pypl.imsave(this_dir + "/%i.png" % (i), numpy.log10(res["entry_1"]["data_1"]["data"])) pypl.imsave(this_dir + "/%i_rs.png" % (i), abs(real_space))
numpy.log10(res["entry_1"]["data_1"]["data"])) pypl.imsave(this_dir + "/simple_test_%s_rs.png" % s, abs(real_space)) # Icosahedron #print("Simulating map") par = condor.ParticleMap(diameter=1E-9, material_type="water", geometry="icosahedron") s = "particle_map_icosahedron" E = condor.Experiment(src, {s: par}, det) res = E.propagate() if plotting: real_space = numpy.fft.fftshift( numpy.fft.ifftn(res["entry_1"]["data_1"]["data_fourier"])) pypl.imsave(this_dir + "/simple_test_%s.png" % s, numpy.log10(res["entry_1"]["data_1"]["data"])) pypl.imsave(this_dir + "/simple_test_%s_rs.png" % s, abs(real_space)) # Atoms #print("Simulating atoms") par = condor.ParticleAtoms(pdb_filename="../../DNA.pdb") s = "particle_atoms" E = condor.Experiment(src, {s: par}, det) res = E.propagate() if plotting: real_space = numpy.fft.fftshift( numpy.fft.ifftn(res["entry_1"]["data_1"]["data_fourier"])) pypl.imsave(this_dir + "/simple_test_%s.png" % s, numpy.log10(res["entry_1"]["data_1"]["data"])) pypl.imsave(this_dir + "/simple_test_%s_rs.png" % s, abs(real_space))
def calculate(self, structure, min_nb_atoms=20, plot_3d=False, plot_slices=False, plot_slices_sph_coords=False, save_diff_intensity=True, **kwargs): """Calculate the descriptor for the given ASE structure. Parameters: structure: `ase.Atoms` object Atomic structure. min_nb_atoms: int, optional (default=20) If the structure contains less than ``min_nb_atoms``, the descriptor is not calculated and an array with zeros is return as descriptor. This is because the descriptor is expected to be no longer meaningful for such a small amount of atoms present in the chosen structure. """ if len(structure) > min_nb_atoms - 1: atoms = scale_structure( structure, scaling_type=self.atoms_scaling, atoms_scaling_cutoffs=self.atoms_scaling_cutoffs, extrinsic_scale_factor=self.extrinsic_scale_factor) # Source src = condor.Source(**self.param_source) # Detector # solid_angle_correction are meaningless for 3d diffraction det = condor.Detector(solid_angle_correction=False, **self.param_detector) # Atoms atomic_numbers = map(lambda el: el.number, atoms) atomic_numbers = [ atomic_number + 5 for atomic_number in atomic_numbers ] # atomic_numbers = [82 for atomic_number in atomic_numbers] # convert Angstrom to m (CONDOR uses meters) atomic_positions = map( lambda pos: [pos.x * 1E-10, pos.y * 1E-10, pos.z * 1E-10], atoms) par = condor.ParticleAtoms(atomic_numbers=atomic_numbers, atomic_positions=atomic_positions) s = "particle_atoms" condor_exp = condor.Experiment(src, {s: par}, det) res = condor_exp.propagate3d() # retrieve some physical quantities that might be useful for users intensity = res["entry_1"]["data_1"]["data"] fourier_space = res["entry_1"]["data_1"]["data_fourier"] phases = np.angle(fourier_space) % (2 * np.pi) # 3D diffraction calculation real_space = np.fft.fftshift( np.fft.ifftn( np.fft.fftshift(res["entry_1"]["data_1"]["data_fourier"]))) window = get_window(self.window, self.n_px) tot_density = window * real_space.real center_of_mass = ndimage.measurements.center_of_mass(tot_density) logger.debug("Tot density data dimensions: {}".format( tot_density.shape)) logger.debug( "Center of mass of total density: {}".format(center_of_mass)) # take the fourier transform of structure in real_space fft_coeff = fftpack.fftn(tot_density, shape=(self.nx_fft, self.ny_fft, self.nz_fft)) # now shift the quadrants around so that low spatial frequencies are in # the center of the 2D fourier transformed image. fft_coeff_shifted = fftpack.fftshift(fft_coeff) # calculate a 3D power spectrum power_spect = np.abs(fft_coeff_shifted)**2 if self.use_mask: xc = (self.nx_fft - 1.0) / 2.0 yc = (self.ny_fft - 1.0) / 2.0 zc = (self.nz_fft - 1.0) / 2.0 # spherical mask a, b, c = xc, yc, zc x, y, z = np.ogrid[-a:self.nx_fft - a, -b:self.ny_fft - b, -c:self.nz_fft - c] mask_int = x * x + y * y + z * z <= self.mask_r_min * self.mask_r_min mask_out = x * x + y * y + z * z >= self.mask_r_max * self.mask_r_max for i in range(self.nx_fft): for j in range(self.ny_fft): for k in range(self.nz_fft): if mask_int[i, j, k]: power_spect[i, j, k] = 0.0 if mask_out[i, j, k]: power_spect[i, j, k] = 0.0 # cut the spectrum and keep only the relevant part for crystal-structure recognition of # hexagonal closed packed (spacegroup=194) # simple cubic (spacegroup=221) # face centered cubic (spacegroup=225) # diamond (spacegroup=227) # body centered cubic (spacegroup=229) # this interval (20:108) might need to be varied if other classes are added power_spect_cut = power_spect[20:108, 20:108, 20:108] # zoom by two times using spline interpolation power_spect = ndimage.zoom(power_spect_cut, (2, 2, 2)) if save_diff_intensity: np.save( '/home/ziletti/Documents/calc_nomadml/rot_inv_3d/power_spect.npy', power_spect) # power_spect.shape = 176, 176, 176 if plot_3d: plot_3d_volume(power_spect) vox = np.copy(power_spect) logger.debug("nan in data: {}".format( np.count_nonzero(~np.isnan(vox)))) # optimized # these specifications are valid for a power_spect = power_spect[20:108, 20:108, 20:108] # and a magnification of 2 xyz_indices_r = get_slice_volume_indices( vox, min_r=32.0, dr=1.0, max_r=83., phi_bins=self.phi_bins, theta_bins=self.theta_bins) # slow - only for benchmarking the fast implementation below (shells_to_sph, interp_theta_phi_surfaces) # (vox_by_slices, theta_phi_by_slices) = _slice_3d_volume_slow(vox) # convert 3d shells (vox_by_slices, theta_phi_by_slices) = get_shells_from_indices( xyz_indices_r, vox) if plot_slices: plot_concentric_shells( vox_by_slices, base_folder=self.configs['io']['main_folder'], idx_slices=None, create_animation=False) image_by_slices = interp_theta_phi_surfaces( theta_phi_by_slices, theta_bins=self.theta_bins_fine, phi_bins=self.phi_bins_fine) if plot_slices_sph_coords: plot_concentric_shells_spherical_coords( image_by_slices, base_folder=self.configs['io']['main_folder'], idx_slices=None) coeffs_list = [] nl_list = [] ls_list = [] for idx_slice in range(image_by_slices.shape[0]): logger.debug("img #{} max: {}".format( idx_slice, image_by_slices[idx_slice].max())) # set to zero the spherical harmonics coefficients above self.sph_l_cutoff coeffs = SHExpandDH(image_by_slices[idx_slice], sampling=2) coeffs_filtered = coeffs.copy() coeffs_filtered[:, self.sph_l_cutoff:, :] = 0. coeffs = coeffs_filtered.copy() nl = coeffs.shape[0] ls = np.arange(nl) coeffs_list.append(coeffs) nl_list.append(nl) ls_list.append(ls) coeffs = np.asarray(coeffs_list).reshape(image_by_slices.shape[0], coeffs.shape[0], coeffs.shape[1], coeffs.shape[2]) sh_coeffs_list = [] for idx_slice in range(coeffs.shape[0]): sh_coeffs = SHCoeffs.from_array(coeffs[idx_slice]) sh_coeffs_list.append(sh_coeffs) sh_spectrum_list = [] for sh_coeff in sh_coeffs_list: sh_spectrum = sh_coeff.spectrum(convention='l2norm') sh_spectrum_list.append(sh_spectrum) sh_spectra = np.asarray(sh_spectrum_list).reshape( coeffs.shape[0], -1) # cut the spherical harmonics expansion to sph_l_cutoff order logger.debug( 'Spherical harmonics spectra maximum before normalization: {}'. format(sh_spectra.max())) sh_spectra = sh_spectra[:, :self.sph_l_cutoff] sh_spectra = (sh_spectra - sh_spectra.min()) / (sh_spectra.max() - sh_spectra.min()) # add results in ASE structure info descriptor_data = dict(descriptor_name=self.name, descriptor_info=str(self), diffraction_3d_sh_spectrum=sh_spectra) else: # return array with zeros for structures with less than min_nb_atoms sh_spectra = np.zeros((52, int(self.sph_l_cutoff))) descriptor_data = dict(descriptor_name=self.name, descriptor_info=str(self), diffraction_3d_sh_spectrum=sh_spectra) structure.info['descriptor'] = descriptor_data return structure
(1e6 * focus_diameter / 2.)**2)) # [J] # Sample pdb_id = '1FFK' sample_size = 18e-9 # Simulation src = condor.Source(wavelength=wavelength, pulse_energy=pulse_energy, focus_diameter=focus_diameter) det = condor.Detector(distance=detector_distance, pixel_size=pixelsize, nx=nx, ny=ny, noise="poisson") par = condor.ParticleAtoms(pdb_id=pdb_id, rotation_formalism="random") E = condor.Experiment(source=src, particles={"particle_atoms": par}, detector=det) # Run multiple times and Save to file N = 100 W = condor.utils.cxiwriter.CXIWriter( "../data/single_protein_diffraction_patterns.h5") for i in range(N): o = E.propagate() W.write(o) W.close() # Save interpolated 3D diffraction volume # =======================================