class AttentionLayer(Config): # Softmax temperature tau: float = 10.0 # Config for the attention net. Final layer will be added automatically mlp_config: MLP = MLP( layers=(100, 50), activation=None ) # Number of input views n_views: int = 2
from config.eamc.defaults import EAMCExperiment, EAMC, AttentionLayer, Discriminator, Loss, Optimizer BACKBONE_MLP_LAYERS = (200, 200, 500) CNN_LAYERS = (("conv", 5, 5, 32, "relu"), ("pool", 2, 2), ("conv", 5, 5, 64, "relu"), ("pool", 2, 2), ("fc", 500), ("bn", ), ("relu", )) CNN_BACKBONES = ( CNN(layers=CNN_LAYERS, input_size=(1, 28, 28)), CNN(layers=CNN_LAYERS, input_size=(1, 28, 28)), ) eamc_blobs_overlap = EAMCExperiment( dataset_config=Dataset(name="blobs_overlap"), model_config=EAMC( backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )), ), discriminator_config=Discriminator(mlp_config=MLP(layers=(32, 32, 32))), loss_config=Loss(), cm_config=DDC(n_clusters=3), optimizer_config=Optimizer(lr_backbones=2e-4, lr_disc=1e-5)), ) eamc_blobs_overlap_5 = EAMCExperiment( dataset_config=Dataset(name="blobs_overlap_5"), model_config=EAMC( backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )),
from config.defaults import Experiment, Dataset, SiMVC, MLP, DDC, Fusion, Loss, CoMVC blobs_overlap = Experiment( dataset_config=Dataset(name="blobs_overlap"), model_config=SiMVC( backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=3), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3", ), ), n_runs=1, n_epochs=10, ) blobs_overlap_contrast = Experiment( dataset_config=Dataset(name="blobs_overlap"), model_config=CoMVC(backbone_configs=( MLP(layers=[32, 32, 32], input_size=(2, )), MLP(layers=[32, 32, 32], input_size=(2, )), ), fusion_config=Fusion(method="weighted_mean", n_views=2), projector_config=None, cm_config=DDC(n_clusters=3), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3|contrast", )), n_runs=1, ) blobs_overlap_5 = Experiment(
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer voc = Experiment( dataset_config=Dataset(name="voc"), model_config=SiMVC( backbone_configs=( MLP(input_size=(512,)), MLP(input_size=(399,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=20), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer(learning_rate=1e-3, scheduler_step_size=50, scheduler_gamma=0.1) ), ) voc_contrast = Experiment( dataset_config=Dataset(name="voc"), model_config=CoMVC( backbone_configs=( MLP(input_size=(512,)), MLP(input_size=(399,)), ), projector_config=None, fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=20), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3|contrast", ),
from config.defaults import Experiment, SiMVC, DDC, Fusion, MLP, Loss, Dataset, CoMVC, Optimizer ccv = Experiment( dataset_config=Dataset(name="ccv"), model_config=SiMVC(backbone_configs=( MLP(input_size=(5000, )), MLP(input_size=(5000, )), MLP(input_size=(4000, )), ), fusion_config=Fusion(method="weighted_mean", n_views=3), cm_config=DDC(n_clusters=20), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3", ), optimizer_config=Optimizer()), ) ccv_contrast = Experiment( dataset_config=Dataset(name="ccv"), model_config=CoMVC(backbone_configs=( MLP(input_size=(5000, )), MLP(input_size=(5000, )), MLP(input_size=(4000, )), ), fusion_config=Fusion(method="weighted_mean", n_views=3), projector_config=None, cm_config=DDC(n_clusters=20), loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3|contrast", delta=20.0), optimizer_config=Optimizer(scheduler_step_size=50, scheduler_gamma=0.1)), n_epochs=100)
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer rgbd = Experiment( dataset_config=Dataset(name="rgbd"), model_config=SiMVC( backbone_configs=( MLP(input_size=(2048,)), MLP(input_size=(300,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), cm_config=DDC(n_clusters=13), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3", ) ), ) rgbd_contrast = Experiment( dataset_config=Dataset(name="rgbd"), model_config=CoMVC( backbone_configs=( MLP(input_size=(2048,)), MLP(input_size=(300,)), ), fusion_config=Fusion(method="weighted_mean", n_views=2), projector_config=None, cm_config=DDC(n_clusters=13), loss_config=Loss( funcs="ddc_1|ddc_2|ddc_3|contrast", ),
class Discriminator(Config): # Config for the discriminator mlp_config: MLP = MLP( layers=(256, 256, 128), activation="leaky_relu:0.2" )