def main(): args = parse_args() cfg = parse_config_file(args.config_file) # Replace cfg parameters with the command line values if args.max_number_of_steps != None: cfg.NUM_TRAIN_ITERATIONS = args.max_number_of_steps if args.learning_rate_decay_type != None: cfg.LEARNING_RATE_DECAY_TYPE = args.learning_rate_decay_type if args.learning_rate != None: cfg.INITIAL_LEARNING_RATE = args.learning_rate if args.batch_size != None: cfg.BATCH_SIZE = args.batch_size if args.model_name != None: cfg.MODEL_NAME = args.model_name train( tfrecords=args.tfrecords, logdir=args.logdir, cfg=cfg, pretrained_model_path=args.pretrained_model, trainable_scopes = args.trainable_scopes, checkpoint_exclude_scopes = args.checkpoint_exclude_scopes, restore_variables_with_moving_averages=args.restore_variables_with_moving_averages, restore_moving_averages=args.restore_moving_averages, read_images=args.read_images )
def main(): args = parse_args() cfg = parse_config_file(args.config_file) visualize_train_inputs( tfrecords=args.tfrecords, cfg=cfg, show_text_labels=args.show_text_labels, read_images=args.read_images )
def main(): args = parse_args() cfg = parse_config_file(args.config_file) if args.batch_size != None: cfg.BATCH_SIZE = args.batch_size if args.model_name != None: cfg.MODEL_NAME = args.model_name classify(tfrecords=args.tfrecords, checkpoint_path=args.checkpoint_path, save_path=args.save_path, max_iterations=args.batches, save_logits=args.save_logits, cfg=cfg)
def main(): args = parse_args() cfg = parse_config_file(args.config_file) if args.batch_size != None: cfg.BATCH_SIZE = args.batch_size if args.model_name != None: cfg.MODEL_NAME = args.model_name extract_and_save(tfrecords=args.tfrecords, checkpoint_path=args.checkpoint_path, save_path=args.save_path, num_iterations=args.batches, feature_keys=args.features, cfg=cfg)
def main(): args = parse_args() cfg = parse_config_file(args.config_file) if args.batch_size != None: cfg.BATCH_SIZE = args.batch_size if args.model_name != None: cfg.MODEL_NAME = args.model_name test(tfrecords=args.tfrecords, checkpoint_path=args.checkpoint_path, save_dir=args.savedir, max_iterations=args.batches, eval_interval_secs=args.eval_interval_secs, cfg=cfg)
parser.add_argument( '--serving', dest='serving', help= 'Export for TensorFlow Serving usage. Otherwise, a constant graph will be generated.', action='store_true', default=False) parser.add_argument( '--do_preprocess', dest='do_preprocess', help='Add the image decoding and preprocessing nodes to the graph.', action='store_true', default=False) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() cfg = parse_config_file(args.config_file) export(args.checkpoint_path, args.export_dir, args.export_version, args.serving, args.do_preprocess, cfg=cfg)