def train_single(trainsize, r, regs): """Train and save a ROM with the given dimension and regularization hyperparameters. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM. r : int Dimension of the desired ROM. Also the number of retained POD modes (left singular vectors) used to project the training data. regs : two or three non-negative floats Regularization hyperparameters (first-order, quadratic, cubic) to use in the Operator Inference least-squares problem for training the ROM. """ utils.reset_logger(trainsize) # Validate inputs. modelform = get_modelform(regs) check_lstsq_size(trainsize, r, modelform) check_regs(regs) # Load training data. Q_, Qdot_, t = utils.load_projected_data(trainsize, r) U = config.U(t) # Train and save the ROM. with utils.timed_block(f"Training ROM with k={trainsize:d}, " f"{config.REGSTR(regs)}"): rom = opinf.InferredContinuousROM(modelform) rom.fit(None, Q_, Qdot_, U, P=regularizer(r, *list(regs))) save_trained_rom(trainsize, r, regs, rom)
def train_and_save_all(trainsize, num_modes, regs): """Train and save ROMs with the given dimension and regularization. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM(s). num_modes : int or list(int) Dimension of the ROM(s) to train, i.e., the number of retained POD modes (left singular vectors) used to project the training data. regs : float or list(float) regularization parameter(s) to use in the training. """ utils.reset_logger(trainsize) logging.info(f"TRAINING {len(num_modes)*len(regs)} ROMS") for r in num_modes: # Load training data. X_, Xdot_, time_domain, _ = utils.load_projected_data(trainsize, r) # Evaluate inputs over the training time domain. Us = config.U(time_domain) # Train and save each ROM. for reg in regs: with utils.timed_block(f"Training ROM with r={r:d}, reg={reg:e}"): rom = train_rom(X_, Xdot_, Us, reg) if rom: rom.save_model(config.rom_path(trainsize, r, reg), save_basis=False, overwrite=True)
def train_single(trainsize, r, regs): """Train and save a ROM with the given dimension and regularization hyperparameters. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM. r : int Dimension of the desired ROM. Also the number of retained POD modes (left singular vectors) used to project the training data. regs : two positive floats Regularization hyperparameters (non-quadratic, quadratic) to use in the Operator Inference least-squares problem for training the ROM. """ utils.reset_logger(trainsize) # Validate inputs. d = check_lstsq_size(trainsize, r) λ1, λ2 = check_regs(regs) # Load training data. Q_, Qdot_, t = utils.load_projected_data(trainsize, r) U = config.U(t) # Train and save the ROM. with utils.timed_block(f"Training ROM with k={trainsize:d}, " f"r={r:d}, λ1={λ1:.0f}, λ2={λ2:.0f}"): rom = roi.InferredContinuousROM(config.MODELFORM) rom.fit(None, Q_, Qdot_, U, P=regularizer(r, d, λ1, λ2)) save_trained_rom(trainsize, r, regs, rom)
def _train_minimize_1D(trainsize, r, regs, testsize=None, margin=1.1): """Train ROMs with the given dimension(s), saving only the ROM with the least training error that satisfies a bound on the integrated POD coefficients, using a search algorithm to choose the regularization parameter. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM. r : int Dimension of the desired ROM. Also the number of retained POD modes (left singular vectors) used to project the training data. regs : two non-negative floats Bounds for the (single) regularization hyperparameter to use in the Operator Inference least-squares problem for training the ROM. testsize : int Number of time steps for which a valid ROM must satisfy the POD bound. margin : float ≥ 1 Amount that the integrated POD coefficients of a valid ROM are allowed to deviate in magnitude from the maximum magnitude of the training data Q, i.e., bound = margin * max(abs(Q)). """ utils.reset_logger(trainsize) # Parse aguments. check_lstsq_size(trainsize, r, modelform="cAHB") log10regs = np.log10(regs) # Load training data. t = utils.load_time_domain(testsize) Q_, Qdot_, _ = utils.load_projected_data(trainsize, r) U = config.U(t[:trainsize]) # Compute the bound to require for integrated POD modes. B = margin * np.abs(Q_).max() # Create a solver mapping regularization hyperparameters to operators. with utils.timed_block(f"Constructing least-squares solver, r={r:d}"): rom = opinf.InferredContinuousROM("cAHB") rom._construct_solver(None, Q_, Qdot_, U, 1) # Test each regularization hyperparameter. def training_error(log10reg): """Return the training error resulting from the regularization hyperparameters λ1 = λ2 = 10^log10reg. If the resulting model violates the POD bound, return "infinity". """ λ = 10**log10reg # Train the ROM on all training snapshots. with utils.timed_block(f"Testing ROM with λ={λ:e}"): rom._evaluate_solver(λ) # Simulate the ROM over the full domain. with np.warnings.catch_warnings(): np.warnings.simplefilter("ignore") q_rom = rom.predict(Q_[:, 0], t, config.U, method="RK45") # Check for boundedness of solution. if not is_bounded(q_rom, B): return _MAXFUN # Calculate integrated relative errors in the reduced space. return opinf.post.Lp_error(Q_, q_rom[:, :trainsize], t[:trainsize])[1] opt_result = opt.minimize_scalar(training_error, method="bounded", bounds=log10regs) if opt_result.success and opt_result.fun != _MAXFUN: λ = 10**opt_result.x with utils.timed_block(f"Best regularization for k={trainsize:d}, " f"r={r:d}: λ={λ:.0f}"): rom._evaluate_solver(λ) save_trained_rom(trainsize, r, (λ, λ), rom) else: message = "Regularization search optimization FAILED" print(message) logging.info(message)
def train_gridsearch(trainsize, r, regs, testsize=None, margin=1.1): """Train ROMs with the given dimension over a grid of potential regularization hyperparameters, saving only the ROM with the least training error that satisfies a bound on the integrated POD coefficients. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM. r : int Dimension of the desired ROM. Also the number of retained POD modes (left singular vectors) used to project the training data. regs : (float, float, int, float, float, int) Bounds and sizes for the grid of regularization hyperparameters. First-order: search in [regs[0], regs[1]] at regs[2] points. Quadratic: search in [regs[3], regs[4]] at regs[5] points. Cubic: search in [regs[6], regs[7]] at regs[8] points. testsize : int Number of time steps for which a valid ROM must satisfy the POD bound. margin : float ≥ 1 Amount that the integrated POD coefficients of a valid ROM are allowed to deviate in magnitude from the maximum magnitude of the training data Q, i.e., bound = margin * max(abs(Q)). """ utils.reset_logger(trainsize) # Parse aguments. if len(regs) not in [6, 9]: raise ValueError("6 or 9 regs required (bounds / sizes of grids") grids = [] for i in range(0, len(regs), 3): check_regs(regs[i:i + 2]) grids.append( np.logspace(np.log10(regs[i]), np.log10(regs[i + 1]), int(regs[i + 2]))) modelform = get_modelform(grids) d = check_lstsq_size(trainsize, r, modelform) # Load training data. t = utils.load_time_domain(testsize) Q_, Qdot_, _ = utils.load_projected_data(trainsize, r) U = config.U(t[:trainsize]) # Compute the bound to require for integrated POD modes. M = margin * np.abs(Q_).max() # Create a solver mapping regularization hyperparameters to operators. num_tests = np.prod([grid.size for grid in grids]) print(f"TRAINING {num_tests} ROMS") with utils.timed_block(f"Constructing least-squares solver, r={r:d}"): rom = opinf.InferredContinuousROM(modelform) rom._construct_solver(None, Q_, Qdot_, U, np.ones(d)) # Test each regularization hyperparameter. errors_pass = {} errors_fail = {} for i, regs in enumerate(itertools.product(*grids)): with utils.timed_block(f"({i+1:d}/{num_tests:d}) Testing ROM with " f"{config.REGSTR(regs)}"): # Train the ROM on all training snapshots. rom._evaluate_solver(regularizer(r, *list(regs))) # Simulate the ROM over the full domain. with np.warnings.catch_warnings(): np.warnings.simplefilter("ignore") q_rom = rom.predict(Q_[:, 0], t, config.U, method="RK45") # Check for boundedness of solution. errors = errors_pass if is_bounded(q_rom, M) else errors_fail # Calculate integrated relative errors in the reduced space. if q_rom.shape[1] > trainsize: errors[tuple(regs)] = opinf.post.Lp_error( Q_, q_rom[:, :trainsize], t[:trainsize])[1] # Choose and save the ROM with the least error. if not errors_pass: message = f"NO STABLE ROMS for r={r:d}" print(message) logging.info(message) return err2reg = {err: reg for reg, err in errors_pass.items()} regs = list(err2reg[min(err2reg.keys())]) with utils.timed_block(f"Best regularization for k={trainsize:d}, " f"r={r:d}: {config.REGSTR(regs)}"): rom._evaluate_solver(regularizer(r, *regs)) save_trained_rom(trainsize, r, regs, rom)
def train_with_minimization(trainsize, num_modes, regs, testsize=None, margin=1.5): """Train ROMs with the given dimension(s), saving only the ROM with the least training error that satisfies a bound on the integrated POD coefficients, using a search algorithm to choose the regularization parameter. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM(s). num_modes : int or list(int) Dimension of the ROM(s) to train, i.e., the number of retained POD modes (left singular vectors) used to project the training data. regs : [float, float] regularization parameter(s) to use in the training. testsize : int Number of time steps for which a valid ROM must satisfy the POD bound. margin : float >= 1 Amount that the integrated POD coefficients of a valid ROM are allowed to deviate in magnitude from the maximum magnitude of the training data Q, i.e., bound = margin * max(abs(Q)). """ utils.reset_logger(trainsize) # Parse aguments. if np.isscalar(num_modes): num_modes = [num_modes] if np.isscalar(regs) or len(regs) != 2: raise ValueError("2 regularizations required (reg_low, reg_high)") bounds = np.log10(regs) # Load the full time domain and evaluate the input function. t = utils.load_time_domain(testsize) Us = config.U(t) for r in num_modes: # Load training data. X_, Xdot_, _, scales = utils.load_projected_data(trainsize, r) # Compute the bound to require for integrated POD modes. B = margin * np.abs(X_).max() # Test each regularization parameter. def training_error_from_rom(log10reg): reg = 10**log10reg # Train the ROM on all training snapshots. with utils.timed_block(f"Testing ROM with r={r:d}, reg={reg:e}"): rom = train_rom(X_, Xdot_, Us[:trainsize], reg) if not rom: return _MAXFUN # Simulate the ROM over the full domain. with np.warnings.catch_warnings(): np.warnings.simplefilter("ignore") x_rom = rom.predict(X_[:,0], t, config.U, method="RK45") # Check for boundedness of solution. if not is_bounded(x_rom, B): return _MAXFUN # Calculate integrated relative errors in the reduced space. return roi.post.Lp_error(X_, x_rom[:,:trainsize], t[:trainsize])[1] opt_result = opt.minimize_scalar(training_error_from_rom, bounds=bounds, method="bounded") if opt_result.success and opt_result.fun != _MAXFUN: best_reg = 10 ** opt_result.x best_rom = train_rom(X_, Xdot_, Us[:trainsize], best_reg) save_best_trained_rom(trainsize, r, best_reg, best_rom) else: print(f"Regularization search optimization FAILED for r = {r:d}")
def train_with_gridsearch(trainsize, num_modes, regs, testsize=None, margin=1.5): """Train ROMs with the given dimension(s) and regularization(s), saving only the ROM with the least training error that satisfies a bound on the integrated POD coefficients. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM(s). num_modes : int or list(int) Dimension of the ROM(s) to train, i.e., the number of retained POD modes (left singular vectors) used to project the training data. regs : float or list(float) regularization parameter(s) to use in the training. testsize : int Number of time steps for which a valid ROM must satisfy the POD bound. margin : float >= 1 Amount that the integrated POD coefficients of a valid ROM are allowed to deviate in magnitude from the maximum magnitude of the training data Q, i.e., bound = margin * max(abs(Q)). """ utils.reset_logger(trainsize) # Parse aguments. if np.isscalar(num_modes): num_modes = [num_modes] if np.isscalar(regs): regs = [regs] # Load the full time domain and evaluate the input function. t = utils.load_time_domain(testsize) Us = config.U(t) logging.info(f"TRAINING {len(num_modes)*len(regs)} ROMS") for ii,r in enumerate(num_modes): # Load training data. X_, Xdot_, _, scales = utils.load_projected_data(trainsize, r) # Compute the bound to require for integrated POD modes. M = margin * np.abs(X_).max() # Test each regularization parameter. trained_roms = {} errors_pass = {} errors_fail = {} for reg in regs: # Train the ROM on all training snapshots. with utils.timed_block(f"Testing ROM with r={r:d}, reg={reg:e}"): rom = train_rom(X_, Xdot_, Us[:trainsize], reg) if not rom: continue # Skip if training fails. trained_roms[reg] = rom # Simulate the ROM over the full domain. with np.warnings.catch_warnings(): np.warnings.simplefilter("ignore") x_rom = rom.predict(X_[:,0], t, config.U, method="RK45") # Check for boundedness of solution. errors = errors_pass if is_bounded(x_rom, M) else errors_fail # Calculate integrated relative errors in the reduced space. if x_rom.shape[1] > trainsize: errors[reg] = roi.post.Lp_error(X_, x_rom[:,:trainsize], t[:trainsize])[1] # Choose and save the ROM with the least error. plt.semilogx(list(errors_fail.keys()), list(errors_fail.values()), f"C{ii}x", mew=1, label=fr"$r = {r:d}$, bound violated") if not errors_pass: print(f"NO STABLE ROMS for r = {r:d}") continue err2reg = {err:reg for reg,err in errors_pass.items()} best_reg = err2reg[min(err2reg.keys())] best_rom = trained_roms[best_reg] save_best_trained_rom(trainsize, r, best_reg, best_rom) plt.semilogx(list(errors_pass.keys()), list(errors_pass.values()), f"C{ii}*", mew=0, label=fr"$r = {r:d}$, bound satisfied") plt.axvline(best_reg, lw=.5, color=f"C{ii}") plt.legend() plt.xlabel(r"Regularization parameter $\lambda$") plt.ylabel(r"ROM relative error $\frac" r"{||\widehat{\mathbf{Q}} - \widetilde{\mathbf{Q}}'||}" r"{||\widehat{\mathbf{Q}}||}$") plt.ylim(0, 1) plt.xlim(min(regs), max(regs)) plt.title(fr"$n_t = {trainsize}$") utils.save_figure(f"regsweep_nt{trainsize:05d}.pdf")
def train_gridsearch(trainsize, r, regs, testsize=None, margin=1.5): """Train ROMs with the given dimension over a grid of potential regularization hyperparameters, saving only the ROM with the least training error that satisfies a bound on the integrated POD coefficients. Parameters ---------- trainsize : int Number of snapshots to use to train the ROM. r : int Dimension of the desired ROM. Also the number of retained POD modes (left singular vectors) used to project the training data. regs : (float, float, int, float, float, int) Bounds and sizes for the grid of regularization parameters. Linear: search in [regs[0], regs[1]] at regs[2] points. Quadratic: search in [regs[3], regs[4]] at regs[5] points. testsize : int Number of time steps for which a valid ROM must satisfy the POD bound. margin : float >= 1 Amount that the integrated POD coefficients of a valid ROM are allowed to deviate in magnitude from the maximum magnitude of the training data Q, i.e., bound = margin * max(abs(Q)). """ utils.reset_logger(trainsize) # Parse aguments. d = check_lstsq_size(trainsize, r) if len(regs) != 6: raise ValueError("len(regs) != 6 (bounds / sizes for parameter grid") check_regs(regs[0:2]) check_regs(regs[3:5]) λ1grid = np.logspace(np.log10(regs[0]), np.log10(regs[1]), int(regs[2])) λ2grid = np.logspace(np.log10(regs[3]), np.log10(regs[4]), int(regs[5])) # Load training data. t = utils.load_time_domain(testsize) Q_, Qdot_, _ = utils.load_projected_data(trainsize, r) U = config.U(t[:trainsize]) # Compute the bound to require for integrated POD modes. M = margin * np.abs(Q_).max() # Create a solver mapping regularization parameters to operators. print(f"TRAINING {λ1grid.size*λ2grid.size} ROMS") with utils.timed_block(f"Constructing least-squares solver, r={r:d}"): rom = roi.InferredContinuousROM(config.MODELFORM) rom._construct_solver(None, Q_, Qdot_, U, np.ones(d)) # Test each regularization parameter. errors_pass = {} errors_fail = {} for λ1, λ2 in itertools.product(λ1grid, λ2grid): with utils.timed_block(f"Testing ROM with λ1={λ1:5e}, λ2={λ2:5e}"): # Train the ROM on all training snapshots. rom._evaluate_solver(regularizer(r, d, λ1, λ2)) # Simulate the ROM over the full domain. with np.warnings.catch_warnings(): np.warnings.simplefilter("ignore") q_rom = rom.predict(Q_[:, 0], t, config.U, method="RK45") # Check for boundedness of solution. errors = errors_pass if is_bounded(q_rom, M) else errors_fail # Calculate integrated relative errors in the reduced space. if q_rom.shape[1] > trainsize: errors[(λ1, λ2)] = roi.post.Lp_error(Q_, q_rom[:, :trainsize], t[:trainsize])[1] # Choose and save the ROM with the least error. if not errors_pass: message = f"NO STABLE ROMS for r={r:d}" print(message) logging.info(message) return err2reg = {err: reg for reg, err in errors_pass.items()} λ1, λ2 = err2reg[min(err2reg.keys())] with utils.timed_block(f"Best regularization for k={trainsize:d}, " f"r={r:d}: λ1={λ1:.0f}, λ2={λ2:.0f}"): rom._evaluate_solver(regularizer(r, d, λ1, λ2)) save_trained_rom(trainsize, r, (λ1, λ2), rom)