예제 #1
0
파일: main.py 프로젝트: rsummers11/CADLab
def init_platform():
    config_file = cfg_from_file('config.yml')
    default_file = cfg_from_file('default.yml')
    logger.info(pprint.pformat(default_file))
    logger.info(pprint.pformat(config_file))

    merge_a_into_b(config_file, config)
    merge_a_into_b(default_file, default)
    default.best_model_path = ''

    if default.gpu == '':
        default.gpu = None
    if default.gpu is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = default.gpu

    default.distributed = default.world_size > 1
    if default.distributed:
        dist.init_process_group(backend=default.dist_backend, init_method=default.dist_url,
                                world_size=default.world_size)

    default.lr_epoch = [int(ep) for ep in default.lr_step.split(',')]

    if default.seed is not None:
        seed = default.seed
        np.random.seed(seed)
        random.seed(seed)
        torch.manual_seed(seed)
        cudnn.deterministic = True
예제 #2
0
파일: main.py 프로젝트: wuqiangch/CADLab
def init_platform():
    config_file = cfg_from_file('config.yml')
    default_file = cfg_from_file('default.yml')
    logger.info(pprint.pformat(default_file))
    logger.info(pprint.pformat(config_file))

    merge_a_into_b(config_file, config)
    merge_a_into_b(default_file, default)
    default.best_model_path = ''

    if default.gpu == '':
        default.gpu = None
    if default.gpu is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = default.gpu

    default.distributed = default.world_size > 1
    if default.distributed:
        dist.init_process_group(backend=default.dist_backend,
                                init_method=default.dist_url,
                                world_size=default.world_size)

    default.lr_epoch = [int(ep) for ep in default.lr_step.split(',')]

    if default.seed is not None:
        seed = default.seed
        np.random.seed(seed)
        random.seed(seed)
        torch.manual_seed(seed)
        cudnn.deterministic = True
예제 #3
0
def main(_):
    parser = argparse.ArgumentParser(
        description='Classification model training')
    parser.add_argument('--config_file', type=str, default=None,
                        help='Optional config file for params')
    parser.add_argument('opts', help='see config.py for all options',
                        default=None, nargs=argparse.REMAINDER)

    args = parser.parse_args()
    if args.config_file is not None:
        cfg_from_file(args.config_file)
    if args.opts is not None:
        cfg_from_list(args.opts)

    assert_and_infer_cfg()
    print_cfg()

    os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.GPU_ID)
    logger = utils.setup_custom_logger('root')
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

    tf_config = tf.ConfigProto(device_count=dict(
        GPU=1), gpu_options=tf.GPUOptions(allow_growth=True))
    tf.enable_resource_variables()

    train(tf_config, logger)
    test(tf_config, logger)
def demo_ori():
    model_file = "../test_res18.prototxt"
    weights_file = "../weights_resize_res18.caffemodel"
    data_file = "../test_pad_30_resize_112.txt"
    img_root = "/home_1/data/caffe/DTY_Side"
    cfg_file = "../test_yxx_resize.yml"
    pkl_dir = "../pkl_feature"
    batch_size = 512

    cfg_from_file(cfg_file)

    net = load_net_(model_file,
                    weights_file=weights_file,
                    GPU_index=3,
                    batch_size=batch_size,
                    forward_type="test")

    img_file_list = open(data_file, "r").readlines()

    img_list = img_file_list[0:batch_size]

    input_data, input_label, input_data_name = load_data_batch_with_label(
        net, img_root, img_list)
    feature_v = get_feature_information(net, model_file, input_data)
    # print feature_v["prob"]

    if not os.path.exists(pkl_dir):
        os.makedirs(pkl_dir)
    save_name = os.path.join(pkl_dir, "feature_res_{}.pkl".format(batch_size))
    pickle.dump(feature_v, open(save_name, 'wb'))
예제 #5
0
def test_net_cls(args):
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    net = load_net_(args.deploy_file,
                    args.weights_file,
                    args.gpu_id,
                    batch_size=-1,
                    forward_type="test")
    img_list = open(args.img_list_file, "r").readlines()

    input_layer_name = net._layer_names[net._inputs[0]]
    batch_size, c, h, w = net.blobs[input_layer_name].shape

    epoch_num = int(len(img_list) / batch_size)

    predict_res = []
    for epoch_i in range(epoch_num):
        if epoch_i % 10 == 0:
            print "TODO: {}% ".format(1.0 * epoch_i / epoch_num * 100)
        batch_img_list = img_list[epoch_i * batch_size:(epoch_i + 1) *
                                  batch_size]
        input_data, input_label, input_data_name = load_data_batch_with_label(
            net, args.img_root_path, batch_img_list)
        single_batch_res = predict_with_label(net, input_data, input_label,
                                              input_data_name)
        predict_res.extend(single_batch_res)

    pkl_dir = os.path.join(args.save_root_path, "res_pkl")
    if not os.path.exists(pkl_dir):
        os.makedirs(pkl_dir)
    save_name = os.path.join(
        pkl_dir, "{}_res.pkl".format(
            os.path.splitext(os.path.basename(args.weights_file))[0]))
    pickle.dump(predict_res, open(save_name, 'wb'))
예제 #6
0
def main():
    global args
    args = parser.parse_args()

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    files = os.listdir(args.model_dir)
    cp_files = [f for f in files if f.endswith('.pth.tar')]
    if args.file_ptn is not None:
        ptn = re.compile(args.file_ptn)
        cp_files = [f for f in files if ptn.search(f)]

    model_info = []
    for cp_file in cp_files:
        file_name = cp_file.rsplit('.', 2)[0]
        model_group_name, model_name, _ = file_name.split('-')
        cp_path = os.path.join(args.model_dir, cp_file)
        model_info.append((model_group_name, model_name, cp_path))

    att_query = AttQuery(model_info, args.split, args.model_dir)

    visualizer = Visualizer()
    while True:
        att_query.print_query()
        command = input('input command: ')
        if ' ' in command:
            opt, arg = command.split(' ', 1)
        else:
            opt, arg = command, None

        if opt in ('q', 'question'):
            att_query.set_question(arg)
        elif opt in ('a', 'answer'):
            att_query.set_answer(arg)
        elif opt in ('c', 'condition'):
            att_query.set_condition(arg)
        elif opt in ('x', 'clean'):
            att_query.set_question(None)
            att_query.set_answer(None)
            att_query.set_condition(None)
        elif opt in ('s', 'save'):
            if arg is None:
                inds = range(att_query.get_res_cnt())
            else:
                inds = map(int, arg.split(','))
            att_query.save(inds)
        elif opt in ('r', 'run'):
            if arg is None:
                arg = 1
            result = att_query.run(int(arg))
            visualizer.visualize(result, att_query.model_info)
        elif opt in ('e', 'exit'):
            break
        else:
            print('wrong command !')
예제 #7
0
def main():
    global args
    args = parser.parse_args()
    args_str = json.dumps(vars(args), indent=2)
    print('[Info] called with: ' + args_str)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # checkpoint directory
    cfg.LOG_DIR = os.path.join(cfg.LOG_DIR, args.checkpoint)

    # select device
    torch.cuda.set_device(args.gpu_id)
    print('[Info] use gpu: {}'.format(torch.cuda.current_device()))

    # data
    print('[Info] init dataset')
    model_group_name, model_name = args.model.split('/')
    val_set = VQADataset('test', model_group_name)
    val_loader = torch.utils.data.DataLoader(val_set,
                                             batch_size=args.bs,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)
    print('sample count: {}'.format(len(val_set)))

    # model
    print('[Info] construct model')
    model_group = import_module('models.' + model_group_name)
    model = getattr(model_group, model_name)(num_words=val_set.num_words,
                                             num_ans=val_set.num_ans,
                                             emb_size=get_emb_size())
    model.cuda()
    cudnn.benchmark = True
    print('[Info] model name: ' + args.model)

    # predict
    fnames = [(i, 'checkpoint-{:03}.pth.tar'.format(i))
              for i in range(args.start_epoch, args.end_epoch, args.epoch_freq)
              ]
    cp_files = [(i, os.path.join(cfg.LOG_DIR, fname)) for i, fname in fnames]
    for epoch, cp_file in cp_files:
        if os.path.isfile(cp_file):
            print("[Info] loading checkpoint '{}'".format(cp_file))
            checkpoint = torch.load(cp_file)
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print("[Info] no checkpoint found at '{}'".format(cp_file))
            continue

        results = predict(val_loader, model)
        result_file = os.path.join(cfg.LOG_DIR,
                                   'result-{:03}.json'.format(epoch))
        json.dump(results, open(result_file, 'w'))
예제 #8
0
    def init_config():
        parser = ArgumentParser(description='configs of DLA')
        parser.add_argument('--cfg', type=str, default='./cfg.yml')
        parser.add_argument("--random-train", action="store_true",
                            help="not fixing random seed.")
        parser.add_argument("--visaulDL", action="store_true",
                            help="visualize training loss with visualDL.")

        args = parser.parse_args()
        print('Called with args:')
        print(args)

        assert args.cfg is not None, 'Missing cfg file'
        cfg_from_file(args.cfg)

        return cfg
예제 #9
0
def main():
    start_time = time.time()
    args = parse_args()
    if args.toy:
        paths = [
            '/mnt/synology/breast/projects/lisa/toy_data/',
            '/input'
        ]
    else:
        paths = [
            '/mnt/synology/breast/archives/screenpoint3/processed_dataset/',
            '/input'
        ]

    if args.no_rsync:
        rsyncing = False
        print('Working with symbolic links', flush=True)
        data_cmd = ['ln', '-s']
    else:
        rsyncing = True
        print('Rsyncing data', flush=True)
        data_cmd = ['/usr/bin/rsync', '-am', '--stats']

    subprocess.call(data_cmd + paths)
    print('Preparing dataset took {:.2f} seconds.'.format(time.time() - start_time), flush=True)

    # HERE
    qstar = True
    

    # Benchmark best convolution algorithm
    from torch.backends import cudnn

    cudnn.benchmark = True

    if args.cfg_file:
        print('Loading config {}.'.format(args.cfg_file))
        cfg_from_file(args.cfg_file)
    else:
        print('No config given, using standard settings.')

    plot_fct(cfg, rsyncing, qstar=qstar, toy=args.toy)
예제 #10
0
파일: main.py 프로젝트: kolk/3dr2n2_tanh
def main():
    args = parse_args()

    #print('Called with args:')
    #print(args)

    # Set main gpu
    theano.sandbox.cuda.use(args.gpu_id)

    if args.cfg_files is not None:
        for cfg_file in args.cfg_files:
            cfg_from_file(cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)
    if not args.randomize:
        np.random.seed(cfg.CONST.RNG_SEED)

    if args.batch_size is not None:
        cfg_from_list(['CONST.BATCH_SIZE', args.batch_size])
    if args.iter is not None:
        cfg_from_list(['TRAIN.NUM_ITERATION', args.iter])
    if args.net_name is not None:
        cfg_from_list(['NET_NAME', args.net_name])
    if args.model_name is not None:
        cfg_from_list(['CONST.NETWORK_CLASS', args.model_name])
    if args.dataset is not None:
        cfg_from_list(['DATASET', args.dataset])
    if args.exp is not None:
        cfg_from_list(['TEST.EXP_NAME', args.exp])
    if args.out_path is not None:
        cfg_from_list(['DIR.OUT_PATH', args.out_path])
    if args.weights is not None:
        cfg_from_list(['CONST.WEIGHTS', args.weights, 'TRAIN.RESUME_TRAIN', True,
                       'TRAIN.INITIAL_ITERATION', int(args.init_iter)])

    print('Using config:')
    pprint.pprint(cfg)

    if not args.test:
        train()
예제 #11
0
def main():
    parser = argparse.ArgumentParser()
    # parser.add_argument('--num_epochs', type=int, default=30, help='training epochs')
    # parser.add_argument('--display_step', type=int, default=20, help='display step')
    # parser.add_argument('--checkpoint_step', type=int, default=5, help='checkpoint step')
    # parser.add_argument('--task', type=str, default="autoencoding", help='autoencoding|classification')
    # parser.add_argument('--batch_size', type=int, default=64, help='batch size')
    # parser.add_argument('--z_dim', type=int, default=10, help='latent variable dimensionality')
    # parser.add_argument('--learning_rate', type=float, default=0.0002, help='learning rate')
    # parser.add_argument('--dataset', type=str, default='svhn', help='mnist|svhn|cifar10')
    # parser.add_argument('--restore', type=int, default=0, help='restore')
    # parser.add_argument('--transfer', type=bool, default=True, help="")
    # parser.add_argument('--source_task', type=str, default="autoencoding")
    # parser.add_argument('--target_task', type=str, default="classification")
    # parser.add_argument('--mode', type=str, default="train", help="train|test|mi")  # test or train or edge-detection
    # parser.add_argument('--remove_dims', type=str, default='')
    # parser.add_argument('--gpu', type=str, default='s0')

    parser.add_argument("--cfg",
                        dest='cfg_file',
                        default='./config/transfer-learning.yml',
                        type=str,
                        help="An optional config file"
                        " to be loaded")
    args = parser.parse_args()

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    # set gpu
    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.gpu

    if (cfg.mode == "train"):
        return train(cfg)
    elif (cfg.mode == "test"):
        return test(cfg)
    elif (cfg.mode == "mi"):
        return MI(cfg)
예제 #12
0
def test_main( iGpuId, iGpuIdCaller, strPrototxtPath, strCaffeModel ):
    args = parse_args()
    
    if iGpuId==iGpuIdCaller:
        print"[ERROR] [callee]callee GpuId = %d, caller GpuId = %d, they are the same!!!" %(iGpuId, iGpuIdCaller);
        sys.exit(1);



    args.gpu_id = iGpuId;
    args.prototxt = strPrototxtPath;
    args.caffemodel = strCaffeModel;

    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    print('Using config:')
    pprint.pprint(cfg)


    print "[callee]callee is called!"
예제 #13
0
    def restore(self):
        if not cfg_from_file():
            return -1

        if not osp.exists(cfg.SRC_DIR) or not osp.exists(cfg.DST_DIR):
            return -2

        image_names = self.getImageNamesFromDisk(cfg.SRC_DIR)
        if len(image_names) == 0:
            return -3

        self.image_names = image_names
        if cfg.IMAGE_NAME == '':
            self.cur_image_no = 0
            self.cur_image_name = self.image_names[self.cur_image_no]
        else:
            try:
                self.cur_image_no = self.image_names.index(cfg.IMAGE_NAME) + 1
            except ValueError:
                return -4
            if self.cur_image_no >= self.getTotalImageNum():
                return -5
            self.cur_image_name = self.image_names[self.cur_image_no]
        return 0
예제 #14
0
def main():
    global args
    args = parser.parse_args()
    args_str = json.dumps(vars(args), indent=2)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # use timestamp as log subdirectory
    timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
    cfg.LOG_DIR = os.path.join(cfg.LOG_DIR, timestamp)
    os.mkdir(cfg.LOG_DIR)
    json.dump(cfg, open(cfg.LOG_DIR + '/config.json', 'w'), indent=2)
    model_group_name, model_name = args.model.split('/')
    shutil.copy('models/' + model_group_name + '.py', cfg.LOG_DIR)

    # init ploter
    ploter = Ploter(timestamp)

    # setting log handlers
    fh = logging.FileHandler(os.path.join(cfg.LOG_DIR, 'log'))
    fh.setLevel(logging.DEBUG)
    fhc = logging.FileHandler('current.log')
    fhc.setLevel(logging.DEBUG)
    sh = logging.StreamHandler(sys.stdout)
    sh.setLevel(logging.DEBUG)

    fmt = '[%(asctime)-15s] %(message)s'
    datefmt = '%Y-%m-%d %H:%M:%S'
    formatter = logging.Formatter(fmt, datefmt)

    fh.setFormatter(formatter)
    fhc.setFormatter(formatter)
    logger.addHandler(fh)
    logger.addHandler(fhc)
    logger.addHandler(sh)
    logger.debug('[Info] called with: ' + args_str)

    logger.debug('[Info] timestamp: ' + timestamp)
    logger.debug('[Info] CPU random seed: {}'.format(torch.initial_seed()))
    logger.debug('[Info] GPU random seed: {}'.format(
        torch.cuda.initial_seed()))

    # select device
    torch.cuda.set_device(args.gpu_id)
    logger.debug('[Info] use gpu: {}'.format(torch.cuda.current_device()))

    # data
    logger.debug('[Info] init dataset')
    do_test = (len(cfg.TEST.SPLITS) == 1
               and cfg.TEST.SPLITS[0] in ('train2014', 'val2014'))
    trn_set = VQADataset('train', model_group_name)
    train_loader = torch.utils.data.DataLoader(trn_set,
                                               batch_size=args.bs,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)
    if do_test:
        val_set = VQADataset('test', model_group_name)
        val_loader = torch.utils.data.DataLoader(val_set,
                                                 batch_size=args.bs,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True)

    # model
    emb_size = 300
    if cfg.WORD_EMBEDDINGS:
        word_vec = merge_embeddings(cfg.WORD_EMBEDDINGS)
        aword = next(iter(word_vec))
        emb_size = len(word_vec[aword])
        logger.debug('[Info] embedding size: {}'.format(emb_size))

    logger.debug('[Info] construct model, criterion and optimizer')
    model_group = import_module('models.' + model_group_name)
    model = getattr(model_group, model_name)(num_words=trn_set.num_words,
                                             num_ans=trn_set.num_ans,
                                             emb_size=emb_size)
    logger.debug('[Info] model name: ' + args.model)
    total_param = 0
    for param in model.parameters():
        total_param += param.nelement()
    logger.debug('[Info] total parameters: {}M'.format(
        math.ceil(total_param / 2**20)))

    # initialize word embedding with pretrained
    if cfg.WORD_EMBEDDINGS:
        emb = model.we.weight.data.numpy()
        words = trn_set.codebook['itow']
        assert '<PAD>' not in word_vec
        fill_cnt = 0
        for i, w in enumerate(words):
            if w in word_vec:
                emb[i] = word_vec[w]
                fill_cnt += 1
        logger.debug('[debug] word embedding filling count: {}/{}'.format(
            fill_cnt, len(words)))
        model.we.weight = nn.Parameter(torch.from_numpy(emb))

        if model_group_name in ('onehot_label', 'prob_label'):
            # initialize object embedding with pretrained
            obj_emb = model.obj_net[0].weight.data.numpy()

            if model_group_name == 'prob_label':
                obj_emb = obj_emb.T

            fill_cnt = 0
            for i, line in enumerate(trn_set.objects_vocab):
                avail, vec = get_class_embedding(line, word_vec, emb_size)
                if avail:
                    obj_emb[i] = vec
                    fill_cnt += 1
            logger.debug('[debug] class embedding filling count: {}/{}'.format(
                fill_cnt, len(trn_set.objects_vocab)))

            if model_group_name == 'prob_label':
                obj_emb = obj_emb.T

            model.obj_net[0].weight = nn.Parameter(torch.from_numpy(obj_emb))

    model.cuda()

    if cfg.SOFT_LOSS:
        criterion = nn.BCEWithLogitsLoss().cuda()
    else:
        criterion = nn.CrossEntropyLoss().cuda()
    logger.debug('[Info] criterion name: ' + criterion.__class__.__name__)
    optimizer = torch.optim.Adam(model.parameters(),
                                 args.lr,
                                 weight_decay=args.wd)
    cudnn.benchmark = True

    # train
    logger.debug('[Info] start training...')
    is_best = False
    best_acc = 0
    best_epoch = -1
    for epoch in range(args.start_epoch, args.epochs):
        lr = adjust_learning_rate(optimizer, epoch)
        ploter.append(epoch, lr, 'lr')

        loss = train(train_loader, model, criterion, optimizer, epoch)
        ploter.append(epoch, loss, 'train-loss')

        if do_test:
            acc = validate(val_loader, model, criterion, epoch)
            ploter.append(epoch, acc, 'val-acc')
            if acc > best_acc:
                is_best = True
                best_acc = acc
                best_epoch = epoch

            logger.debug('Evaluate Result:\t'
                         'Acc  {0}\t'
                         'Best {1} ({2})'.format(acc, best_acc, best_epoch))

        # save checkpoint
        cp_fname = 'checkpoint-{:03}.pth.tar'.format(epoch)
        cp_path = os.path.join(cfg.LOG_DIR, cp_fname)
        state = {
            'epoch': epoch + 1,
            'state_dict': model.state_dict(),
            'best_acc': best_acc,
            'optimizer': optimizer.state_dict()
        }
        if epoch % args.save_freq == 0:
            torch.save(state, cp_path)
        if is_best:
            best_path = os.path.join(cfg.LOG_DIR, 'model-best.pth.tar')
            torch.save(state, best_path)
예제 #15
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg',
                        dest='cfg_file',
                        help='optional config file',
                        default='tgif_qa_action.yml',
                        type=str)
    args = parser.parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    assert cfg.dataset.name in ['tgif-qa', 'msrvtt-qa', 'msvd-qa', 'svqad-qa']
    assert cfg.dataset.question_type in [
        'frameqa', 'count', 'transition', 'action', 'none'
    ]
    # check if the data folder exists
    assert os.path.exists(cfg.dataset.data_dir)
    # check if k_max is set correctly
    assert cfg.train.k_max_frame_level <= 16
    assert cfg.train.k_max_clip_level <= 8

    if not cfg.multi_gpus:
        torch.cuda.set_device(cfg.gpu_id)
    # make logging.info display into both shell and file
    cfg.dataset.save_dir = os.path.join(cfg.dataset.save_dir, cfg.exp_name)
    if not os.path.exists(cfg.dataset.save_dir):
        os.makedirs(cfg.dataset.save_dir)
    else:
        assert os.path.isdir(cfg.dataset.save_dir)
    log_file = os.path.join(cfg.dataset.save_dir, "log")
    if not cfg.train.restore and not os.path.exists(log_file):
        os.mkdir(log_file)
    else:
        assert os.path.isdir(log_file)

    fileHandler = logging.FileHandler(os.path.join(log_file, 'stdout.log'),
                                      'w+')
    fileHandler.setFormatter(logFormatter)
    rootLogger.addHandler(fileHandler)
    # args display
    for k, v in vars(cfg).items():
        logging.info(k + ':' + str(v))
    # concat absolute path of input files

    if cfg.dataset.name == 'tgif-qa':
        cfg.dataset.train_question_pt = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.train_question_pt.format(cfg.dataset.name,
                                                 cfg.dataset.question_type))
        cfg.dataset.val_question_pt = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.val_question_pt.format(cfg.dataset.name,
                                               cfg.dataset.question_type))
        cfg.dataset.vocab_json = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.vocab_json.format(cfg.dataset.name,
                                          cfg.dataset.question_type))

        cfg.dataset.appearance_feat = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.appearance_feat.format(cfg.dataset.name,
                                               cfg.dataset.question_type))
        cfg.dataset.motion_feat = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.motion_feat.format(cfg.dataset.name,
                                           cfg.dataset.question_type))
    else:
        cfg.dataset.question_type = 'none'
        cfg.dataset.appearance_feat = '{}_appearance_feat.h5'
        cfg.dataset.motion_feat = '{}_motion_feat.h5'
        cfg.dataset.vocab_json = '{}_vocab.json'
        cfg.dataset.train_question_pt = '{}_train_questions.pt'
        cfg.dataset.val_question_pt = '{}_val_questions.pt'
        cfg.dataset.train_question_pt = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.train_question_pt.format(cfg.dataset.name))
        cfg.dataset.val_question_pt = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.val_question_pt.format(cfg.dataset.name))
        cfg.dataset.vocab_json = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.vocab_json.format(cfg.dataset.name))

        cfg.dataset.appearance_feat = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.appearance_feat.format(cfg.dataset.name))
        cfg.dataset.motion_feat = os.path.join(
            cfg.dataset.data_dir,
            cfg.dataset.motion_feat.format(cfg.dataset.name))

    # set random seed
    torch.manual_seed(cfg.seed)
    np.random.seed(cfg.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(cfg.seed)

    train(cfg)
예제 #16
0
def main():
    mode_list = ['train', 'test', 'train_pos', 'stats']
    models_list = ['vgg', 'qnet', 'resnet', 'fcresnet', 'simple', 'auto']
    start_time = time.time()

    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', help='configuration file to use.')
    parser.add_argument('--mode', help='mode (train or test')
    parser.add_argument('--model', help='model to train')
    parser.add_argument('--no-rsync',
                        dest='no_rsync',
                        help='use symbolic links instead',
                        action='store_true')
    parser.add_argument('--toy',
                        dest='toy',
                        help='use toy data set',
                        action='store_true')
    args = parser.parse_args()

    if args.cfg:
        print('Loading config {}.'.format(args.cfg))
        cfg_from_file(args.cfg)
    else:
        print('No config given, using standard settings.')

    pprint(cfg)

    if args.model not in models_list:
        print('Model does not exist. Choose from {}. Exiting.'.format(
            models_list))
    elif args.mode not in mode_list:
        print(
            'Mode does not exist. Choose from {}. Exiting.'.format(mode_list))
    else:
        rsyncing = False if args.no_rsync else True
        if rsyncing:
            print('Rsynced data! (run_script)', flush=True)
        else:
            print('Using symbolic links! (run_script)', flush=True)

        if args.mode == 'train':
            if args.model == 'vgg':
                train_feat(model_string='vgg', rsyncing=rsyncing, toy=args.toy)
            elif args.model == 'qnet':
                exp_name = get_f_save_check_tensorB_expName(cfg)[2]
                train_qnet(feat_model_string=exp_name,
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'simple':
                train_feat(model_string='simple',
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'resnet':
                train_feat(model_string='resnet',
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'resnet_less':
                train_feat(model_string='resnet_less',
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'fcresnet':
                train_feat(model_string='fcresnet',
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'auto':
                train_feat('auto', rsyncing=rsyncing, toy=args.toy)
        elif args.mode == 'train_pos':
            if args.model == 'vgg':
                train_feat_pos(model_string='vgg',
                               rsyncing=rsyncing,
                               toy=args.toy)
            elif args.model == 'simple':
                train_feat(model_string='simple',
                           rsyncing=rsyncing,
                           toy=args.toy)
            elif args.model == 'resnet':
                train_feat_pos(model_string='resnet',
                               rsyncing=rsyncing,
                               toy=args.toy)
            else:
                print('Use pos only for feature net training')
        elif args.mode == 'test':
            if args.model == 'vgg':
                test_vgg()
                # Not yet implemented
            elif args.model == 'qnet':
                exp_name = get_f_save_check_tensorB_expName(cfg)[2]
                test_qnet(feat_model_string=exp_name,
                          rsyncing=rsyncing,
                          toy=args.toy)
            elif args.model == 'resnet' or args.model == 'simple':
                exp_name = get_f_save_check_tensorB_expName(cfg)[2]
                test_feat(feat_model_string=exp_name,
                          rsyncing=rsyncing,
                          toy=args.toy)
                # Not yet implemented
        elif args.mode == 'stats':
            exp_name = get_f_save_check_tensorB_expName(cfg)[2]
            get_stats(feat_model_string=exp_name,
                      rsyncing=rsyncing,
                      toy=args.toy)

    total_time = time.time() - start_time
    print('Main program executed in {:.0f} seconds.'.format(total_time))
예제 #17
0
def main():
    args = parser.parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # select device
    torch.cuda.set_device(args.gpu_id)
    print('[Info] use gpu: {}'.format(torch.cuda.current_device()))

    # get parameters
    sys.path.insert(0, args.model_dir)
    from params import params
    assert len(params) > 1

    last_cfg = params[0][-1]
    last_cfg()
    get_data.main()
    dataset = VQADataset('test', params[0][1])
    itoa = dataset.codebook['itoa']

    vote_buff = [{} for i in range(len(dataset))]
    conf_buff = np.zeros((len(dataset), len(itoa)))
    sm_conf_buff = np.zeros((len(dataset), len(itoa)))
    l2_conf_buff = np.zeros((len(dataset), len(itoa)))
    que_ids = dataset.que_id
    for fpath, mgrp, mname, acc, cfg_func, in params:
        # data
        if cfg_func != last_cfg:
            cfg_func()
            get_data.main()
            last_cfg = cfg_func
            dataset = VQADataset('test', mgrp)
            itoa = dataset.codebook['itoa']

        dataset.reload_obj(mgrp)
        dataloader = torch.utils.data.DataLoader(
                dataset, batch_size=args.bs, shuffle=False,
                num_workers=2, pin_memory=True)

        # model
        model_group = import_module('models.' + mgrp)
        model = getattr(model_group, mname)
                num_words=dataset.num_words,
                num_ans=dataset.num_ans,
                emb_size=get_emb_size())
        cp_file = os.path.join(args.model_dir, fpath)
        checkpoint = torch.load(cp_file, map_location=lambda s, l: s.cuda(0))
        model.load_state_dict(checkpoint['state_dict'])
        model.cuda()
        model.eval()

        # predict
        bar = progressbar.ProgressBar()
        start = 0
        # sample: (que_id, img, que, [obj])
        for sample in bar(dataloader):
            sample_var = [Variable(d).cuda() for d in list(sample)[1:]]
            score = model(*sample_var)
            sm_score = torch.nn.functional.softmax(score)
            l2_score = torch.nn.functional.normalize(score)

            bs = score.size(0)
            conf_buff[start:start+bs] += score.data.cpu().numpy()
            sm_conf_buff[start:start+bs] += sm_score.data.cpu().numpy()
            l2_conf_buff[start:start+bs] += l2_score.data.cpu().numpy()

            _, ans_ids = torch.max(score.data, dim=1)
            for i, ans_id in enumerate(ans_ids):
                ans = itoa[ans_id]
                ans_score = acc + vote_buff[start + i].get(ans, 0)
                vote_buff[start + i][ans] = ans_score

            start += bs
예제 #18
0
def main():

    #-------------解析参数-------------#
    args = _parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)  #读取args.cfg_file文件内容并融合到cfg中
    pprint.pprint(cfg)

    #-------------任务相关配置-------------#
    #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    #os.environ['CUDA_VISBLE_DEVICES'] = cfg.GPUS
    #os.environ['CUDA_VISBLE_DEVICES'] = '0'
    tf.logging.set_verbosity(tf.logging.INFO)  #设置日志级别

    #-------------搭建计算图-------------#
    with tf.device('/cpu:0'):
        # 操作密集型放在CPU上进行
        query = tf.placeholder(dtype=tf.float32, shape=[None, 2])
        num_gpus = len(cfg.GPUS.split(','))
        # 建立dataset,获取iterator
        ite_val = reader.get_dataset_iter_valid(cfg)
        mem_val, mem_adj_val, gt_val = ite_val.get_next()

    # 在GPU上运行预测
    with tf.variable_scope(tf.get_variable_scope(
    )) as vscope:  # 见https://github.com/tensorflow/tensorflow/issues/6220
        for i in range(num_gpus):
            with tf.device('/gpu:%d' % i), tf.name_scope('GPU_%d' %
                                                         i) as scope:
                # 获取网络,并完成前传
                graph_mem_net = GraphMemNet(cfg)
                logits = graph_mem_net.inference(mem_val, mem_adj_val, query)

                tf.get_variable_scope().reuse_variables()
    # saver
    model_variables_map_save = {}
    for variable in tf.trainable_variables():
        model_variables_map_save[variable.name.replace(':0', '')] = variable
    print '#####################################################'
    for save_item in model_variables_map_save.keys():
        print save_item
    print '#####################################################'
    saver_save = tf.train.Saver(var_list=model_variables_map_save,
                                max_to_keep=cfg.TRAIN.MAX_MODELS_TO_KEEP)

    #-------------启动Session-------------#
    # (预测验证集,求取精度)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
    config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
    with tf.Session(config=config) as sess:
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()

        #加载pretrained models
        tf.global_variables_initializer().run()
        saver_save.restore(
            sess, '/data/yinzhiyu/results/Graph-Memory-Networks/models-1')

        sess.graph.finalize()
        start_time = time.time()
        query_ = np.array([[1.0, 0.0]] * cfg.TRAIN.BATCH_SIZE, dtype=np.float)
        num_pred = 0
        T = 0
        P = 0
        TP = 0
        for i in range(cfg.TRAIN.MAX_ITE):
            try:
                print 'predicting %dth mol' % i
                output, gt = sess.run([logits, gt_val],
                                      feed_dict={query: query_},
                                      options=run_options)
                ind_out = np.argmax(output, axis=1)[0]
                ind_gt = np.argmax(gt, axis=1)[0]
                num_pred += 1
                if ind_gt == 0:
                    P += 1
                    if ind_out == ind_gt:
                        T += 1
                        TP += 1
                else:
                    if ind_out == ind_gt:
                        T += 1
            except:
                pre = float(T) / float(num_pred)
                recall = float(TP) / float(P)
                print 'finished!!!!'
                print 'F1 score is %.2f ' % (100.0 * 2.0 * (pre * recall /
                                                            (pre + recall)))
                break
def main():
    args = _parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)  #读取args.cfg_file文件内容并融合到cfg中
    pprint.pprint(cfg)

    # 读取索引文件
    with open(osp.join(cfg.INPUT.DATA_DIR, cfg.INPUT.INDEX), 'r') as f:
        index = f.readlines()

    # 原子数最多的分子共含146个原子,可认为最大为150个,故mem_size=150,167数据集共86个原子,故one-hot设为90维...单个分子,最大bond数为162
    suppl = Chem.SDMolSupplier(osp.join(cfg.INPUT.DATA_DIR, cfg.INPUT.SDF))
    for i in range(len(suppl)):
        m = suppl[i]
        if m is None:
            continue
        # atom的one-hot编码,degree,H attached
        bond_feature = [np.array([], dtype=np.float)]
        for bond in m.GetBonds():
            if bond.GetBondType() == rdkit.Chem.rdchem.BondType.SINGLE:
                bond_feature.append(
                    np.array([1.0, 0.0, 0.0, 0.0], dtype=np.float))
            elif bond.GetBondType() == rdkit.Chem.rdchem.BondType.DOUBLE:
                bond_feature.append(
                    np.array([0.0, 1.0, 0.0, 0.0], dtype=np.float))
            elif bond.GetBondType() == rdkit.Chem.rdchem.BondType.TRIPLE:
                bond_feature.append(
                    np.array([0.0, 0.0, 1.0, 0.0], dtype=np.float))
            else:
                bond_feature.append(
                    np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float))
            # is bond in ring
            if bond.IsInRing():
                bond_feature.append(np.array([1.0, 0.0], dtype=float))
            else:
                bond_feature.append(np.array([0.0, 1.0], dtype=float))
        bond_feature = np.concatenate(bond_feature)
        feature_mol = []
        for atom in m.GetAtoms():
            feature_atom = []
            one_hot = np.zeros(cfg.NETWORK.ONE_HOT_DIM, dtype=np.float)
            one_hot[atom.GetAtomicNum()] = 1.0
            feature_atom.append(one_hot)
            degree_onehot = np.zeros(cfg.NETWORK.MAX_NUM_DEGREE,
                                     dtype=np.float)
            degree = len([x.GetAtomicNum() for x in atom.GetNeighbors()])
            degree_onehot[degree - 1] = 1.0
            feature_atom.append(degree_onehot)
            feature_atom.append(bond_feature)
            # 整理feature_atom,并加入mem,
            feature_atom = np.concatenate(feature_atom)
            feature_mol.append(feature_atom)  #此处未padding!!!!!!!!!!!
        feature_mol = np.array(feature_mol)
        # 构建邻接矩阵
        adj = np.zeros((cfg.NETWORK.NUM_BOND_TYPE, cfg.NETWORK.MEM_SIZE,
                        cfg.NETWORK.MEM_SIZE),
                       dtype=np.float)
        for ii in range(len(m.GetAtoms())):
            for jj in range(len(m.GetAtoms())):
                if m.GetBondBetweenAtoms(ii, jj) == None:
                    continue
                else:
                    if m.GetBondBetweenAtoms(ii, jj).GetBondType(
                    ) == rdkit.Chem.rdchem.BondType.SINGLE:
                        adj[0][ii][jj] = 1.0
                    elif m.GetBondBetweenAtoms(ii, jj).GetBondType(
                    ) == rdkit.Chem.rdchem.BondType.DOUBLE:
                        adj[1][ii][jj] = 1.0
                    elif m.GetBondBetweenAtoms(ii, jj).GetBondType(
                    ) == rdkit.Chem.rdchem.BondType.TRIPLE:
                        adj[2][ii][jj] = 1.0
                    else:
                        adj[3][ii][jj] = 1.0

        # 保存
        file_name = index[i].split()[0]
        mol_fea_adj = np.array([
            feature_mol, adj,
            np.array([1.0, 0.0], dtype=np.float) if index[i].split()[1]
            == 'Active' else np.array([0.0, 1.0], dtype=np.float)
        ])
        np.save(
            osp.join(cfg.INPUT.DATA_DIR, cfg.INPUT.FEATURE,
                     file_name + '.npy'), mol_fea_adj)
        print '%d precessed\n' % i
    """
예제 #20
0
파일: db.py 프로젝트: kleinlsl/nCov
import os

import pymysql
from config import cfg_from_file
from config import cfg

# Whether to import external configuration
if os.path.exists("resource/config.yaml"):
    cfg_from_file("resource/config.yaml")

# MySQL Configuration
host = cfg.database.mysql.host
user = cfg.database.mysql.user
password = cfg.database.mysql.passwd
charset = cfg.database.mysql.charset
db = cfg.database.mysql.db  # Database name used
"""
database:数据库连接层
"""


def get_conn():
    # 建立连接
    conn = pymysql.connect(host=host,
                           user=user,
                           password=password,
                           db=db,
                           charset=charset)
    # c创建游标
    cursor = conn.cursor()
    return conn, cursor
예제 #21
0
def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Train a keypoint regressor.')
    parser.add_argument('--cfg',
                        dest='cfg_file',
                        help='optional config file',
                        default=None,
                        type=str)
    parser.add_argument('--gpu',
                        dest='gpu',
                        help='GPU to use for running this.',
                        default='0',
                        type=str)
    parser.add_argument(
        '--save',
        dest='save',
        action='store_const',
        const=True,
        default=False,
        help='Set to save the features. Works only in mAP mode. '
        '(Set in cfg).')
    parser.add_argument(
        '--outfpath',
        default=None,
        help='(Optional) Give a custom path to save the features. '
        'By def. picks a path in ckpt directory.')
    parser.add_argument('--preprocs',
                        default=[],
                        nargs='*',
                        help='Set additional preprocs to do when testing. Eg. '
                        'can put \'flips\'. This will flip images before '
                        'pushing through the network. Can be useful for '
                        'late fusion of multiple features.')
    parser.add_argument('--ept',
                        dest='ept',
                        nargs='+',
                        type=str,
                        default=[],
                        help='Optional end point to store. '
                        'By def store the softmax logits.')
    parser.add_argument('--split_name',
                        default=None,
                        type=str,
                        help='Set to change the dataset split to run on. '
                        'Eg, \'train\' or \'test\'.')
    parser.add_argument('--frames_per_video',
                        default=None,
                        type=int,
                        help='Set to change the '
                        'cfg.TRAIN.VIDEO_FRAMES_PER_VIDEO.')
    parser.add_argument('--dataset_list_dir',
                        default=None,
                        type=str,
                        help='Set to change the train_test_lists dir.')
    args = parser.parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    # Change config for some options
    if args.split_name is not None:
        cfg.TEST.DATASET_SPLIT_NAME = args.split_name
    if args.frames_per_video is not None:
        cfg.TEST.VIDEO_FRAMES_PER_VIDEO = args.frames_per_video
    if args.outfpath is not None:
        args.save = True
    return args, cfg
def test(para, iter, mode="Test"):
    model = AVGRunner(para, mode)
    model.run_benchmark(iter, mode=mode)


if __name__ == '__main__':
    FLAGS = tf.flags.FLAGS
    device = FLAGS.device
    config = FLAGS.config
    paras = FLAGS.restore
    mode = FLAGS.mode
    step = FLAGS.iter

    os.environ['CUDA_VISIBLE_DEVICES'] = device

    cfg_from_file(config)
    print(c.SAVE_PATH)
    print(device, config, paras)

    runner = AVGRunner(paras, mode)
    try:
        if mode == 'train':
            runner.train()
        else:
            runner.run_benchmark(step, mode=mode)
    except Exception as e:
        runner.notifier.send("Something wrong\n" + str(e))
        runner.logger.error(str(e))
    else:
        runner.notifier.send("Done")
예제 #23
0
파일: deploy.py 프로젝트: rsummers11/CADLab
        volume_index = [x.strip() for x in f.readlines()]
    img_list = []
    for v in volume_index:
        fd_path = os.path.join(data_dir, v)
        if os.path.isfile(fd_path) and fd_path.endswith(IMG_SUFFIX):
            img_list += [v]
        else:
            img_list1 = [f for f in os.listdir(fd_path) if f.endswith(IMG_SUFFIX)]
            img_list1.sort(key=lambda x: int(x[:-4]))
            img_list1 = [os.path.join(v,f) for f in img_list1]
            img_list += img_list1
    return img_list


if __name__ == '__main__':
    cfg_from_file(default_cfg)
    caffe.set_device(GPU_ID)
    caffe.set_mode_gpu()
    net = caffe.Net(default_prototxt, default_model, caffe.TEST)

    print 'Processing img ...'
    image_index = get_image_index(image_set_file)
    im_num = len(image_index)
    vals = np.empty((im_num,))
    for j in xrange(im_num):
        fn = os.path.join(data_dir, image_index[j])
        print fn, '\t',
        im = load_img(fn)
        im -= cfg.PIXEL_MEANS

        data = np.zeros((1, 3, im.shape[0], im.shape[1]), dtype=np.float32)
예제 #24
0
def get_args():
    """Get arguments from stdin."""
    parser = argparse.ArgumentParser(description='Pytorch acoustic model.')
    parser.add_argument('--encoder', type=str, default='gru',
                        help='encoder type {default: gru}')
    parser.add_argument('--num-anchor', type=int, default=10, metavar='HF',
                        help='Num anchors per frame {default: 10.0}')
    parser.add_argument('--lambda-factor', type=float, default=5.0, metavar='HF',
                        help='Balance factor between classification and regression loss (default: 5.0).')
    parser.add_argument('--input-dim', type=int, default=40, metavar='N',
                        help='Input feature dimension without context (default: 40).')
    parser.add_argument('--kernel-size', type=int, default=3, metavar='N',
                        help='Kernel size of Wavenet or CNN (default:3).')
    parser.add_argument('--hidden-dim', type=int, default=128, metavar='N',
                        help='Hidden dimension of feature extractor (default: 128).')
    parser.add_argument('--num-layers', type=int, default=2, metavar='N',
                        help='Numbers of hidden layers of feature extractor (default: 2).')
    parser.add_argument('--output-dim', type=int, default=2000, metavar='N',
                        help='Output dimension, number of classes (default: 2000).')
    parser.add_argument('--dropout', type=float, default=0.0001, metavar='DR',
                        help='dropout of feature extractor (default: 0.0001).')
    parser.add_argument('--left-context', type=int, default=5, metavar='N',
                        help='Left context length for splicing feature (default: 5).')
    parser.add_argument('--right-context', type=int, default=5, metavar='N',
                        help='Right context length for splicing feature (default: 5).')
    parser.add_argument('--max-epochs', type=int, default=20, metavar='N',
                        help='Maximum epochs to train (default: 20).')
    parser.add_argument('--min-epochs', type=int, default=0, metavar='N',
                        help='Minimum epochs to train (default: 0).')
    parser.add_argument('--batch-size', type=int, default=8, metavar='N',
                        help='Batch size for training (default: 8).')
    parser.add_argument('--learning-rate', type=float, default=0.001, metavar='LR',
                        help='Initial learning rate (default: 0.001).')
    parser.add_argument('--halving-factor', type=float, default=0.5, metavar='HF',
                        help='Half factor for learning rate (default: 0.5).')
    parser.add_argument('--start-halving-impr', type=float, default=0.01, metavar='S',
                        help='Improvement threshold to half the learning rate (default: 0.01).')
    parser.add_argument('--end-halving-impr', type=float, default=0.001, metavar='E',
                        help='Improvement threshold to stop half learning rate (default: 0.001).')
    parser.add_argument('--init-weight-decay', type=float, default=1e-5, metavar='E',
                                    help='Weight decay of L2 normalization (default: 1e-5).')
    parser.add_argument('--seed', type=int, default=1234, metavar='S',
                        help='Random seed (default: 1234).')
    parser.add_argument('--use-cuda', type=int, default=1, metavar='C',
                        help='Use cuda (1) or cpu(0).')
    parser.add_argument('--multi-gpu', type=int, default=0, metavar='G',
                        help='Use multi gpu (1) or not (0).')
    parser.add_argument('--train', type=int, default=1,
                        help='Executing mode, train (1) or test (0).')
    parser.add_argument('--train-scp', type=str, default='',
                        help='Training data file.')
    parser.add_argument('--dev-scp', type=str, default='',
                        help='Development data file.')
    parser.add_argument('--save-dir', type=str, default='',
                        help='Directory to output the model.')
    parser.add_argument('--load-model', type=str, default='',
                        help='Previous model to load.')
    parser.add_argument('--test', type=int, default=0,
                        help='Executing mode, 1 for test, 0 no test')
    parser.add_argument('--test-scp', type=str, default='',
                        help='Test data file.')
    parser.add_argument('--output-file', type=str, default='',
                        help='Test output file')
    parser.add_argument('--region-output-file', type=str, default='',
                        help='Region output file')
    parser.add_argument('--log-interval', type=int, default=1000, metavar='N',
                        help='How many batches to wait before logging training status.')
    parser.add_argument('--num-workers', type=int, default=1, metavar='N',
                        help='How many workers used to load data')
    parser.add_argument('--config-file', type=str, default='',
                        help='config file in yaml format')
    args = parser.parse_args()

    if args.config_file != '':
        cfg_from_file(args.config_file)
    
    return args
예제 #25
0
    for v in volume_index:
        fd_path = os.path.join(data_dir, v)
        if os.path.isfile(fd_path) and fd_path.endswith(IMG_SUFFIX):
            img_list += [v]
        else:
            img_list1 = [
                f for f in os.listdir(fd_path) if f.endswith(IMG_SUFFIX)
            ]
            img_list1.sort(key=lambda x: int(x[:-4]))
            img_list1 = [os.path.join(v, f) for f in img_list1]
            img_list += img_list1
    return img_list


if __name__ == '__main__':
    cfg_from_file(default_cfg)
    caffe.set_device(GPU_ID)
    caffe.set_mode_gpu()
    net = caffe.Net(default_prototxt, default_model, caffe.TEST)

    print 'Processing img ...'
    image_index = get_image_index(image_set_file)
    im_num = len(image_index)
    vals = np.empty((im_num, ))
    for j in xrange(im_num):
        fn = os.path.join(data_dir, image_index[j])
        print fn, '\t',
        im = load_img(fn)
        im -= cfg.PIXEL_MEANS

        data = np.zeros((1, 3, im.shape[0], im.shape[1]), dtype=np.float32)
                    os.chdir(main_wd)
                    im.save(fullpath)
                    os.chdir(model_wd)

            for i in range(dataloader.batch_size):
                R_count += 1

            if R_count >= 2000:
                cont = False
                break
        ii += 1


if __name__ == "__main__":
    main_wd = os.getcwd()
    cfg_from_file('experiments_bird.yml')

    print('Using config:')
    pprint.pprint(cfg)

    now = datetime.datetime.now(dateutil.tz.tzlocal())
    timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
    output_dir = '%s/%s_%s_%s_%s' % \
                 (cfg.OUTPUT_PATH, cfg.DATASET_NAME, cfg.CONFIG_NAME, cfg.RUN, timestamp)

    output_global_dir = '%s/global' % cfg.OUTPUT_PATH
    mkdir_p(output_dir)
    mkdir_p(output_global_dir)

    os.chdir(main_wd)
    model_info = cfg.MODELS[cfg.RUN]
예제 #27
0
def main():
  args=parse_args()
  # 将args.cfg_file融合到cfg中
  from config import cfg, cfg_from_file
  if args.cfg_file is not None:
    cfg_from_file(args.cfg_file)

  tf.logging.info('Using Config:')
  pprint.pprint(cfg)
  
  # 指定或创建文件夹?????
  from config import get_output_dir
  train_dir = get_output_dir('default' if args.cfg_file is None else args.cfg_file)

  # 指定使用哪块GPU
  os.environ['CUDA_VISIBLE_DEVICES']=cfg.GPUS
  num_clones=len(cfg.GPUS.split(','))

  # 设置日志显示级别
  tf.logging.set_verbosity(tf.logging.INFO)

  # 创建计算图,并设置为默认图
  with tf.Graph().as_default():
    tf.set_random_seed(cfg.RNG_SEED)#?????
    # 关于之后要单间的模型的部署设置
    deploy_config=model_deploy.DeploymentConfig(num_clones=num_clones,clone_on_cpu=False,replica_id=0,num_replica=1,num_ps.task=0)
    
    # 创建global_step
    with tf.device(deploy_config.variables_device()):
      global_step=slim.creat_global_step()

    # ------------------------------数据集------------------------------#
    kwargs={}# 保存关于如何使用视频的超参数视频
    if cfg.TRAIN.VIDEO_FRAMES_PER_VIDEO>1:
      kwargs['num_samples']=cfg.TRAIN.VIDEO_FRAMES_PER_VIDEO
      kwargs['randomFromSegmentStyle']=cfg.TRAIN.READ_SEGMENT_STYLE
      kwargs['modality'] = cfg.INPUT.VIDEO.MODALITY   #输入模态:默认为rgb
      kwargs['split_id'] = cfg.INPUT.SPLIT_ID
      # 还有俩不知啥意思??????

    # 选择预处理函数(也是作者重新修改过的!!!!!!!!!!!!!!!)
    from preprocessing import preprocessing_factory
    image_preprocessing_fn=preprocessing_factory.get_preprocessing(preprocessing_name,is_training=True)
    
    # 读取数据——获取Dataset对象
    from datasets import dataset_factory #注意此datasets在本目录下,是作者自己编写的,其中的get_dataset函数没有发生变化,只是其调用的函数选项发生变化,是作者自定义的,返回Dataset对象和一个整数
    dataset,num_pose_keypoints=dataset_factory.get_dataset(cfg.DATASET_NAME,cfg.DATASET_SPLIT_NAME,cfg.DATASET_DIR,**kwargs)
    # 读取数据——创建provider,读取+预处理,打包成batch,建立预取队列!!!!!
    with tf.device(deploy_config.inputs_device()):
      provider=slim.dataset_data_provider.DatasetDataProvider(dataset,
                                                              num_readers= cfg.NUM_READERS,
                                                              common_queue_capacity= 20*cfg.TRAIN.BATCH_SIZE,
                                                              common_queue_min= 10*cfg.TRAIN.BATCH_SIZE)
      from preprocess_pipeline import train_preprocess_pipeline #该函数依据provider 和image_preprocessing_cn作为参数,从provider中读数据并且预处理
      [image,pose_label_hmap,pose_label_valid,action_label]=train_preprocess_pipeline(provider,cfg,     ,image_preprocessing_fn)# 真正读取数据??????????????
      # 打包batch
      images,pose_labels_hmap,pose_labels_valid,action_labels=tf.train.batch([image,pose_label_hmap,pose_label_valid,action_label],
                                                                              batch_size=cfg.TRAIN.BATCH_SIZE,
                                                                              num_thread=cfg.NUM_PREPROCESSING_THREADS,
                                                                              capacity=5*cfg.TRAIN.BATCH_SIZE)
      # 建立数据读取队列
      batch_queue=slim.prefetch_queue.prefetch_queue([images,pose_labels_hmap,pose_labels_valid,action_labels],
                                                      capacity=5*deploy_config.clones.cfg.TRAIN.ITER_SIZE)
      


    # ------------------------------选择网络?????------------------------------#
    def clone_fn(batch_queue):
      # 出队一个batch
      images,labels_pose,labels_pose_valid,labels_action=batch_queue.dequeue()
      labels_pose=tf.concat(tf.unstack(labels_pose),axis=0)
      labels_pose_valid=tf.concat(tf.unstack(labels_pose_valid),axis=0)
      
      # 前传(输入images)  注意:网络不仅会输出分类logits,还会输出姿态,但姿态输出记录在end_points
      logits,end_points=network_fn(images)
      pose_logits=end_points['PoseLogits']
      
      # 指定loss function 并计算loss
      # 该作者把一切都存进end_points里面了,
      end_points['Images']= images           # 存储信息只end_points中
      end_points['PoseLabels']= labels_pose
      end_points['ActionLabels']= labels_action
      end_points['ActionLogits']=logits
      gen_loss(labels_action,logits,cfg.TRAIN.LOSS_FN_ACTION,
              dataset.num_calsses,cfg.TRAIN.LOSS_FN_ACTION_WT,
              labels_pose,pose_logits,cfg.TRAIN.LOSS_FN_POSE,
              labels_pose_valid,cfg.TRAIN.LOSS_FN_POSE_WT,
              end_points,cfg)# 计算loss 该函数在loss模块中,loss.py就在当前路径下??????????????????

      return end_points
      
    # 收集summary
    summaries=set(tf.get_collection(tf.GRAPH.SUMMARIES))

    # clone是对输出和名称nz空间的封装
    clones=model_deploy.creat_clones(deploy_config,clone_fn,[batch_queue])
    first_clone_scope=deploy_config.clone_scope(0)
    update_ops=tf.get_collection(tf.GraphKeys.UPDATE_OPS,first_clone_scope)
      

    from nets import nets_factory
    network_fn=net_factory.get_network_fn(cfg.MODEL_NAME,num_calsses=,num)#该函数作者又重新写过

    # 为每一个end_point节点加入监控
    for end_point in end_points:
      x= end_points[end_point]
      summaries.add(tf.summary.histogram('activations/'+ end_point, x))
    
    # 加入图片summary
    sum_img=tf.concat(tf.unstack(end_points['Image']))  # unstack作用是取消堆叠,也就是一帧一帧零散出来,用list包裹  concat感觉像是将所有图片按空间拼接起来,方便看每一帧
    if sum_img.get_shape().as_list()[-1] not in [1, 3, 4]:
      # 再做点处理  还不太懂???????
    # 加入summary
    summaries.add(tf.summary.image('images',sum_img))
    
    # 加入由于加入pose而导致模型中新增的endpoi
    for epname in cfg.TRAIN.OTHER_IMG_SUMMARY_TO_ADD:    # OTHER_IMG_SUMMARIES_TO_ADD = ['PosePrelogitsBasedAttention']
      if epname in end_points:
        summary.add(tf.summary.image('image_vis/'+ epname, end_points[epname]))
    
    summaries=summaries.union()   # 求summaries和参数的并集,还赋给summaries???????

    # 为loss增加summaries
    for loss in tf.get_collection(tf.Graphkeys.LOSSES,first_clone_scope):
      summaries.add(tf.summary.scalar(tensor=loss,name='losses/%s'% loss.op.name))
    
    # 为变量增加summies
    for variable in slim.get_model_variables():
      summaries.add(tf.summary.histogram(variable.op.name, variable))

    # 配置滑动平均 (moving average)

    # 配置优化程序
    with tf.device(deploy_config.optimizer_device()):
      # 设置学习率
      learning_rate= _configure_learning_rate(dataset.num_samples, num_clones, global_step)
      # 
      optimizer=_configure_optimizer(learning_rate)
      summaries.add(tf.summary.scalar(tensor=learning_rate,name='learning_rate'))

    # 设置哪些变量需要参与训练
    variables_to_train=_get_variables_to_train()
예제 #28
0
def set_global_vars(use_arg_parser=True):
    global globalvars
    global image_width
    global image_height
    global dims_input_const
    global img_pad_value
    global normalization_const
    global map_file_path
    global epoch_size
    global num_test_images
    global model_folder
    global base_model_file
    global feature_node_name
    global last_conv_node_name
    global start_train_conv_node_name
    global pool_node_name
    global last_hidden_node_name
    global roi_dim
    global prediction
    global prediction_in
    global prediction_out

    if use_arg_parser:
        parser = argparse.ArgumentParser()
        parser.add_argument('-c',
                            '--config',
                            help='Configuration file in YAML format',
                            required=False,
                            default=None)
        parser.add_argument('-t',
                            '--device_type',
                            type=str,
                            help="The type of the device (cpu|gpu)",
                            required=False,
                            default="cpu")
        parser.add_argument(
            '-d',
            '--device',
            type=int,
            help="Force to run the script on a specified device",
            required=False,
            default=None)
        parser.add_argument('-l',
                            '--list_devices',
                            action='store_true',
                            help="Lists the available devices and exits",
                            required=False,
                            default=False)
        parser.add_argument('--prediction',
                            action='store_true',
                            help="Switches to prediction mode",
                            required=False,
                            default=False)
        parser.add_argument(
            '--prediction_in',
            action='append',
            type=str,
            help=
            "The input directory for images in prediction mode. Can be supplied mulitple times.",
            required=False,
            default=list())
        parser.add_argument(
            '--prediction_out',
            action='append',
            type=str,
            help=
            "The output directory for processed images and predicitons in prediction mode. Can be supplied mulitple times.",
            required=False,
            default=list())
        parser.add_argument(
            '--no_headers',
            action='store_true',
            help="Whether to suppress the header row in the ROI CSV files",
            required=False,
            default=False)
        parser.add_argument(
            '--output_width_height',
            action='store_true',
            help=
            "Whether to output width/height instead of second x/y in the ROI CSV files",
            required=False,
            default=False)
        parser.add_argument(
            '--suppressed_labels',
            type=str,
            help=
            "Comma-separated list of labels to suppress from being output in ROI CSV files.",
            required=False,
            default="")

        args = vars(parser.parse_args())

        # prediction mode?
        prediction = args['prediction']
        if prediction:
            prediction_in = args['prediction_in']
            if len(prediction_in) == 0:
                raise RuntimeError("No prediction input directory provided!")
            for p in prediction_in:
                if not os.path.exists(p):
                    raise RuntimeError(
                        "Prediction input directory '%s' does not exist" % p)
            prediction_out = args['prediction_out']
            if len(prediction_out) == 0:
                raise RuntimeError("No prediction output directory provided!")
            for p in prediction_out:
                if not os.path.exists(p):
                    raise RuntimeError(
                        "Prediction output directory '%s' does not exist" % p)
            if len(prediction_in) != len(prediction_out):
                raise RuntimeError(
                    "Number of input and output directories don't match: %i != %i"
                    % (len(prediction_in), len(prediction_out)))
            for i in range(len(prediction_in)):
                if prediction_in[i] == prediction_out[i]:
                    raise RuntimeError(
                        "Input and output directories #%i for prediction are the same: %s"
                        % ((i + 1), prediction_in[i]))

        if args['list_devices']:
            print("Available devices (Type - ID - description)")
            for d in cntk.device.all_devices():
                if d.type() == 0:
                    type = "cpu"
                elif d.type() == 1:
                    type = "gpu"
                else:
                    type = "<unknown:" + str(d.type()) + ">"
                print(type + " - " + str(d.id()) + " - " + str(d))
            sys.exit(0)
        if args['config'] is not None:
            cfg_from_file(args['config'])
        if args['device'] is not None:
            if args['device_type'] == 'gpu':
                cntk.device.try_set_default_device(
                    cntk.device.gpu(args['device']))
            else:
                cntk.device.try_set_default_device(cntk.device.cpu())

    image_width = cfg["CNTK"].IMAGE_WIDTH
    image_height = cfg["CNTK"].IMAGE_HEIGHT

    # dims_input -- (pad_width, pad_height, scaled_image_width, scaled_image_height, orig_img_width, orig_img_height)
    dims_input_const = MinibatchData(
        Value(batch=np.asarray([
            image_width, image_height, image_width, image_height, image_width,
            image_height
        ],
                               dtype=np.float32)), 1, 1, False)

    # Color used for padding and normalization (Caffe model uses [102.98010, 115.94650, 122.77170])
    img_pad_value = [103, 116, 123] if cfg["CNTK"].BASE_MODEL == "VGG16" else [
        114, 114, 114
    ]
    normalization_const = Constant([[[103]], [[116]], [[
        123
    ]]]) if cfg["CNTK"].BASE_MODEL == "VGG16" else Constant([[[114]], [[114]],
                                                             [[114]]])

    # dataset specific parameters
    map_file_path = os.path.join(abs_path, cfg["CNTK"].MAP_FILE_PATH)
    globalvars['class_map_file'] = cfg["CNTK"].CLASS_MAP_FILE
    globalvars['train_map_file'] = cfg["CNTK"].TRAIN_MAP_FILE
    globalvars['test_map_file'] = cfg["CNTK"].TEST_MAP_FILE
    globalvars['train_roi_file'] = cfg["CNTK"].TRAIN_ROI_FILE
    globalvars['test_roi_file'] = cfg["CNTK"].TEST_ROI_FILE
    globalvars['output_path'] = cfg["CNTK"].OUTPUT_PATH
    epoch_size = cfg["CNTK"].NUM_TRAIN_IMAGES
    num_test_images = cfg["CNTK"].NUM_TEST_IMAGES

    # model specific parameters
    if cfg["CNTK"].PRETRAINED_MODELS.startswith(".."):
        model_folder = os.path.join(abs_path, cfg["CNTK"].PRETRAINED_MODELS)
    else:
        model_folder = cfg["CNTK"].PRETRAINED_MODELS
    base_model_file = os.path.join(model_folder, cfg["CNTK"].BASE_MODEL_FILE)
    feature_node_name = cfg["CNTK"].FEATURE_NODE_NAME
    last_conv_node_name = cfg["CNTK"].LAST_CONV_NODE_NAME
    start_train_conv_node_name = cfg["CNTK"].START_TRAIN_CONV_NODE_NAME
    pool_node_name = cfg["CNTK"].POOL_NODE_NAME
    last_hidden_node_name = cfg["CNTK"].LAST_HIDDEN_NODE_NAME
    roi_dim = cfg["CNTK"].ROI_DIM

    data_path = map_file_path

    # set and overwrite learning parameters
    globalvars['rpn_lr_factor'] = cfg["CNTK"].RPN_LR_FACTOR
    globalvars['frcn_lr_factor'] = cfg["CNTK"].FRCN_LR_FACTOR
    globalvars['e2e_lr_factor'] = cfg["CNTK"].E2E_LR_FACTOR
    globalvars['momentum_per_mb'] = cfg["CNTK"].MOMENTUM_PER_MB
    globalvars['e2e_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg[
        "CNTK"].E2E_MAX_EPOCHS
    globalvars[
        'rpn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg["CNTK"].RPN_EPOCHS
    globalvars['frcn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg[
        "CNTK"].FRCN_EPOCHS
    globalvars['rnd_seed'] = cfg.RNG_SEED
    globalvars['train_conv'] = cfg["CNTK"].TRAIN_CONV_LAYERS
    globalvars['train_e2e'] = cfg["CNTK"].TRAIN_E2E

    if not os.path.isdir(data_path):
        raise RuntimeError("Directory %s does not exist" % data_path)

    globalvars['class_map_file'] = os.path.join(data_path,
                                                globalvars['class_map_file'])
    globalvars['train_map_file'] = os.path.join(data_path,
                                                globalvars['train_map_file'])
    globalvars['test_map_file'] = os.path.join(data_path,
                                               globalvars['test_map_file'])
    globalvars['train_roi_file'] = os.path.join(data_path,
                                                globalvars['train_roi_file'])
    globalvars['test_roi_file'] = os.path.join(data_path,
                                               globalvars['test_roi_file'])
    globalvars['headers'] = not args['no_headers']
    globalvars['output_width_height'] = args['output_width_height']
    suppressed_labels = []
    if len(args['suppressed_labels']) > 0:
        suppressed_labels = args['suppressed_labels'].split(",")
    globalvars['suppressed_labels'] = suppressed_labels

    if cfg["CNTK"].FORCE_DETERMINISTIC:
        force_deterministic_algorithms()
    np.random.seed(seed=globalvars['rnd_seed'])
    globalvars['classes'] = parse_class_map_file(globalvars['class_map_file'])
    globalvars['num_classes'] = len(globalvars['classes'])

    if cfg["CNTK"].DEBUG_OUTPUT:
        # report args
        print("Using the following parameters:")
        print("Flip image       : {}".format(cfg["TRAIN"].USE_FLIPPED))
        print("Train conv layers: {}".format(globalvars['train_conv']))
        print("Random seed      : {}".format(globalvars['rnd_seed']))
        print("Momentum per MB  : {}".format(globalvars['momentum_per_mb']))
        if globalvars['train_e2e']:
            print("E2E epochs       : {}".format(globalvars['e2e_epochs']))
        else:
            print("RPN lr factor    : {}".format(globalvars['rpn_lr_factor']))
            print("RPN epochs       : {}".format(globalvars['rpn_epochs']))
            print("FRCN lr factor   : {}".format(globalvars['frcn_lr_factor']))
            print("FRCN epochs      : {}".format(globalvars['frcn_epochs']))
예제 #29
0
def main():
    global args
    args = parser.parse_args()
    args_str = json.dumps(vars(args), indent=2)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # use timestamp as log subdirectory
    timestamp = args.timestamp
    cfg.LOG_DIR = os.path.join(cfg.LOG_DIR, timestamp)
    model_group_name, model_name = args.model.split('/')

    # setting log handlers
    sh = logging.StreamHandler(sys.stdout)
    sh.setLevel(logging.DEBUG)
    logger.addHandler(sh)
    logger.debug('[Info] called with: ' + args_str)
    logger.debug('[Info] timestamp: ' + timestamp)

    # select device
    torch.cuda.set_device(args.gpu_id)
    logger.debug('[Info] use gpu: {}'.format(torch.cuda.current_device()))

    # data
    assert (len(cfg.TEST.SPLITS) == 1 and cfg.TEST.SPLITS[0] in ('val2014'))
    logger.debug('[Info] init dataset')
    val_set = VQADataset('test', model_group_name)
    RES_DIR = '/home/lyt/code/bert-as-service-test/result'
    queIds, queFea, _ = load_data(split_name='val2014', RES_DIR=RES_DIR)
    assert queIds.tolist() == val_set.que_id.tolist()
    logger.debug('[Info] Clustering using {}, {} clusters'.format(
        args.cluster_alg, args.n_clusters))
    clusfilename = '{}/{}/{}_{}_n{}.pkl'.format(RES_DIR, 'v2', 'train2014',
                                                args.cluster_alg,
                                                args.n_clusters)
    logger.debug('[Info] cluster file: {}'.format(clusfilename))
    val_qTypeLabels = clustering(queFea,
                                 clu_num=args.n_clusters,
                                 clu_alg=args.cluster_alg,
                                 savefname=clusfilename)

    # model
    logger.debug('[Info] construct model')
    model_group = import_module('models.' + model_group_name)
    model = getattr(model_group, model_name)(num_words=val_set.num_words,
                                             num_ans=val_set.num_ans,
                                             emb_size=get_emb_size())
    logger.debug('[Info] model name: ' + args.model)
    total_param = 0
    for param in model.parameters():
        total_param += param.nelement()
    logger.debug('[Info] total parameters: {}M'.format(
        math.ceil(total_param / 2**20)))
    model.cuda()
    cudnn.benchmark = True

    # load best model, predict
    logger.debug('[Info] load model ...')
    best_path = os.path.join(cfg.LOG_DIR, 'model-best.pth.tar')
    #if os.path.isfile(best_path):
    assert os.path.isfile(best_path)
    logger.debug("[Info] loading checkpoint '{}'".format(best_path))
    cp_state = torch.load(best_path)
    best_acc = cp_state['best_acc']
    logger.debug('[Info] best model with best acc {}'.format(best_acc))
    model.load_state_dict(cp_state['state_dict'])
    #else:
    #    logger.debug("[Info] no checkpoint found at '{}'".format(best_path))

    for i in range(args.n_clusters):
        logger.debug('[Info] choose cluster ID: {}'.format(i))
        #sel = val_qTypeLabels == args.clus_id
        sel = val_qTypeLabels == i
        val_quesIds = queIds[sel].tolist()
        logger.debug(
            '[Info] #Val set before/after clustering and choosing {}/{}'.
            format(queIds.shape[0], len(val_quesIds)))
        val_set_sub = select_subset(val_set, sel)
        val_loader = torch.utils.data.DataLoader(val_set_sub,
                                                 batch_size=args.bs,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True)
        logger.debug('sample count: {}'.format(len(val_set_sub)))
        acc = validate(val_loader, model, None, None, quesIds=val_quesIds)
        logger.debug('Evaluate Result:\tAcc  {0}'.format(acc))
예제 #30
0
파일: main.py 프로젝트: chrischoy/PyPyCaffe
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    print('Called with args:')
    pprint.pprint(args)

    # set the global cfg variable from the file
    if args.cfg_file is not None:
        for cfg_file in args.cfg_file:
            cfg_from_file(cfg_file)

    if args.batch_size is not None:
        cfg_from_list(['BATCH_SIZE', args.batch_size])
    if args.no_prefetch:
        cfg_from_list(['USE_PREFETCH', False])

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)

    # set up caffe
예제 #31
0
def main():

    #-------------解析参数-------------#
    args = _parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)  #读取args.cfg_file文件内容并融合到cfg中
    pprint.pprint(cfg)

    #-------------任务相关配置-------------#
    #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    #os.environ['CUDA_VISBLE_DEVICES'] = cfg.GPUS
    tf.logging.set_verbosity(tf.logging.INFO)  #设置日志级别

    #-------------搭建计算图-------------#
    with tf.device('/cpu:0'):
        # 操作密集型放在CPU上进行
        query = tf.placeholder(dtype=tf.float32, shape=[None, 2])
        global_step = tf.get_variable('global_step', [],
                                      dtype=None,
                                      initializer=tf.constant_initializer(0),
                                      trainable=False)
        lr = tf.train.exponential_decay(cfg.TRAIN.LEARNING_RATE_BASE,
                                        global_step,
                                        cfg.TRAIN.DECAY_STEP,
                                        cfg.TRAIN.DECAY_RATE,
                                        staircase=True)  # 学习率
        tf.summary.scalar('learnrate', lr)
        opt = tf.train.MomentumOptimizer(lr, cfg.TRAIN.MOMENTUM)  # 优化函数
        #opt = tf.train.GradientDescentOptimizer(lr)  # 优化函数
        num_gpus = len(cfg.GPUS.split(','))
        # 建立dataset,获取iterator
        ite_train = reader.get_dataset_iter(cfg)
        mem, mem_adj, gt = ite_train.get_next()

    # 在GPU上运行训练
    #tower_grads = []
    with tf.variable_scope(tf.get_variable_scope(
    )) as vscope:  # 见https://github.com/tensorflow/tensorflow/issues/6220
        for i in range(num_gpus):
            with tf.device('/gpu:%d' % i), tf.name_scope('GPU_%d' %
                                                         i) as scope:
                #query = np.array([[1.0,0.0]]*cfg.TRAIN.BATCH_SIZE,dtype=np.float)
                #query = tf.cast(tf.convert_to_tensor(query),tf.float32)
                # 获取网络,并完成前传
                #with tf.Graph().as_default():
                graph_mem_net = GraphMemNet(cfg)
                logits = graph_mem_net.inference(mem, mem_adj, query)

                tf.get_variable_scope().reuse_variables()
                # 做一个batch准确度的预测
                prediction = tf.nn.softmax(logits)
                acc_batch = tf.reduce_mean(
                    tf.cast(
                        tf.equal(tf.argmax(prediction, 1), tf.argmax(gt, 1)),
                        tf.float32))
                tf.summary.scalar('acc_on_batch', acc_batch)
                # 求loss
                for variable in tf.global_variables():
                    if variable.name.find(
                            'weights'
                    ) > 0:  # 把参数w加入集合tf.GraphKeys.WEIGHTS,方便做正则化(此句必须放在正则化之前)
                        tf.add_to_collection(tf.GraphKeys.WEIGHTS, variable)
                loss = loss_func(cfg, logits, gt, regularization=True)
                tf.summary.scalar('loss', loss)
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_step = opt.minimize(loss,
                                  global_step=global_step,
                                  var_list=tf.trainable_variables())

    merged = tf.summary.merge_all()

    # saver
    model_variables_map_save = {}
    for variable in tf.trainable_variables():
        model_variables_map_save[variable.name.replace(':0', '')] = variable
    print '#####################################################'
    for save_item in model_variables_map_save.keys():
        print save_item
    print '#####################################################'
    saver_save = tf.train.Saver(var_list=model_variables_map_save,
                                max_to_keep=cfg.TRAIN.MAX_MODELS_TO_KEEP)

    #-------------启动Session-------------#
    # (预测验证集,求取精度)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
    config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
    with tf.Session(config=config) as sess:
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        joint_writer = tf.summary.FileWriter(cfg.SUMMARY_DIR, sess.graph)
        summary_writer = tf.summary.FileWriter(cfg.SUMMARY_DIR, sess.graph)

        #初始化变量(或加载pretrained models)
        tf.global_variables_initializer().run()
        #saver_save.restore(sess,'/data/yinzhiyu/results/Graph-Memory-Networks/models-4001')

        sess.graph.finalize()
        start_time = time.time()
        query_ = np.array([[1.0, 0.0]] * cfg.TRAIN.BATCH_SIZE, dtype=np.float)
        #query = tf.cast(tf.convert_to_tensor(query),tf.float32)
        for i in range(cfg.TRAIN.MAX_ITE):
            _, learnrate, loss_value, step, summary = sess.run(
                [train_step, lr, loss, global_step, merged],
                feed_dict={query: query_},
                options=run_options,
                run_metadata=run_metadata)
            if i == 0:
                start_time = time.time()
            if i % 10 == 0:
                if i >= 1:
                    end_time = time.time()
                    avg_time = (end_time - start_time) / float(i + 1)
                    print("Average time consumed per step is %0.2f secs." %
                          avg_time)
                print(
                    "After %d training step(s), learning rate is %g, loss on training batch is %g."
                    % (step, learnrate, loss_value))

            # 每个epoch验证一次,保存模型
            if i % 2000 == 0:
                print '#############################################'
                print 'saving model...'
                saver_save.save(sess,
                                cfg.TRAIN.SAVED_MODEL_PATTERN,
                                global_step=global_step)
                print 'successfully saved !'
                print '#############################################'

            if i % 200 == 0:
                joint_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                summary_writer.add_summary(summary, i)
            end_time = time.time()
            #print '%dth time step,consuming %f secs'%(i, start_time-end_time)

    summary_writer.close()
예제 #32
0
                            choices=['TH14', 'AN'])
        parser.add_argument('--expname', type=str, required=True)
        parser.add_argument('--rsltname', type=str, default='rslt')
        # This argument would only be used when testing.
        parser.add_argument('--pretrained',
                            type=str,
                            default='default.caffemodel')
        parser.add_argument('--num_workers', type=int, default=16)

        args = parser.parse_args()

        config_path = osp.join(cfg.EXP_DIR, args.dataset, args.expname,
                               'config.yml')

        # Init
        cfg_from_file(config_path)
        args.phase = args.phase.upper()
        setup(args.phase, args.dataset, args.expname, args.rsltname)

        # Check whether specified <pretrained> when testing:
        # a work-around for conditional required argument.
        if args.phase == 'TEST':
            assert args.pretrained != 'default.caffemodel', \
                'Speicify pretrained model when testing.'
            cfg.SNAPSHOT_PATH = osp.join(cfg.LOCAL_SNAPSHOT_PATH,
                                         args.pretrained)

        caffe.init_glog(
            osp.join(cfg.LOG_PATH, '{}{}.'.format(args.phase, cfg.INFIX)))

        pred_rslts = proc_prll(args.phase, args.num_workers)
예제 #33
0
                        action='store_true')

    args = parser.parse_args()
    return args


if __name__ == '__main__':

    print('Doing training...')
    args = parse_args_train()

    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    cfg.GPU_ID = args.gpu_id
    cfg.train_imdb = args.train_imdb
    cfg.val_prototxt = args.test_prototxt
    cfg.test_prototxt = args.test_prototxt
    cfg.TRAIN.VALIDATION_ITERATION = eval(cfg.TRAIN.VALIDATION_ITERATION)

    print('Using config:')
    pprint.pprint(cfg)

    # if not args.randomize:
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)
예제 #34
0
                        action='store_true')

    args = parser.parse_args()
    return args


if __name__ == '__main__':

    print('Doing training...')
    args = parse_args_train()

    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)

    cfg.GPU_ID = args.gpu_id
    cfg.train_imdb = args.train_imdb
    cfg.val_prototxt = args.test_prototxt
    cfg.test_prototxt = args.test_prototxt
    cfg.TRAIN.VALIDATION_ITERATION = eval(cfg.TRAIN.VALIDATION_ITERATION)

    print('Using config:')
    pprint.pprint(cfg)

    # if not args.randomize:
    # fix the random seeds (numpy and caffe) for reproducibility
    np.random.seed(cfg.RNG_SEED)
    caffe.set_random_seed(cfg.RNG_SEED)