def main(): opt = OptInit().get_args() logging.info('===> Creating dataloader ...') train_dataset = GeoData.S3DIS(opt.data_dir, opt.area, True, pre_transform=T.NormalizeScale()) train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4) test_dataset = GeoData.S3DIS(opt.data_dir, opt.area, train=False, pre_transform=T.NormalizeScale()) test_loader = DenseDataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0) opt.n_classes = train_loader.dataset.num_classes logging.info('===> Loading the network ...') model = DenseDeepGCN(opt).to(opt.device) if opt.multi_gpus: model = DataParallel(DenseDeepGCN(opt)).to(opt.device) logging.info('===> loading pre-trained ...') model, opt.best_value, opt.epoch = load_pretrained_models( model, opt.pretrained_model, opt.phase) logging.info(model) logging.info('===> Init the optimizer ...') criterion = torch.nn.CrossEntropyLoss().to(opt.device) optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_adjust_freq, opt.lr_decay_rate) optimizer, scheduler, opt.lr = load_pretrained_optimizer( opt.pretrained_model, optimizer, scheduler, opt.lr) logging.info('===> Init Metric ...') opt.losses = AverageMeter() opt.test_value = 0. logging.info('===> start training ...') for _ in range(opt.epoch, opt.total_epochs): opt.epoch += 1 logging.info('Epoch:{}'.format(opt.epoch)) train(model, train_loader, optimizer, scheduler, criterion, opt) if opt.epoch % opt.eval_freq == 0 and opt.eval_freq != -1: test(model, test_loader, opt) scheduler.step() logging.info('Saving the final model.Finish!')
def main(): opt = OptInit().get_args() logging.info('===> Creating dataloader ...') train_dataset = GeoData.S3DIS(opt.data_dir, opt.area, True, pre_transform=T.NormalizeScale()) train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4) test_dataset = GeoData.S3DIS(opt.data_dir, opt.area, train=False, pre_transform=T.NormalizeScale()) test_loader = DenseDataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0) opt.n_classes = train_loader.dataset.num_classes logging.info('===> Loading the network ...') model = DenseDeepGCN(opt).to(opt.device) if opt.multi_gpus: model = DataParallel(DenseDeepGCN(opt)).to(opt.device) logging.info('===> loading pre-trained ...') model, opt.best_value, opt.epoch = load_pretrained_models( model, opt.pretrained_model, opt.phase) logging.info(model) logging.info('===> Init the optimizer ...') criterion = torch.nn.CrossEntropyLoss().to(opt.device) optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_adjust_freq, opt.lr_decay_rate) optimizer, scheduler, opt.lr = load_pretrained_optimizer( opt.pretrained_model, optimizer, scheduler, opt.lr) logging.info('===> Init Metric ...') opt.losses = AverageMeter() opt.test_value = 0. logging.info('===> start training ...') for _ in range(opt.epoch, opt.total_epochs): opt.epoch += 1 logging.info('Epoch:{}'.format(opt.epoch)) train(model, train_loader, optimizer, criterion, opt) if opt.epoch % opt.eval_freq == 0 and opt.eval_freq != -1: test(model, test_loader, opt) scheduler.step() # ------------------ save checkpoints # min or max. based on the metrics is_best = (opt.test_value < opt.best_value) opt.best_value = max(opt.test_value, opt.best_value) model_cpu = {k: v.cpu() for k, v in model.state_dict().items()} save_checkpoint( { 'epoch': opt.epoch, 'state_dict': model_cpu, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'best_value': opt.best_value, }, is_best, opt.ckpt_dir, opt.exp_name) # ------------------ tensorboard log info = { 'loss': opt.losses.avg, 'test_value': opt.test_value, 'lr': scheduler.get_lr()[0] } opt.writer.add_scalars('epoch', info, opt.iter) logging.info('Saving the final model.Finish!')