def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) # prepare dataset train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) # train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) split_file_path = Path(args.split_path) assert split_file_path.exists(), "{:} does not exist".format( split_file_path) split_info = torch.load(split_file_path) train_split, valid_split = split_info["train"], split_info["valid"] assert (len(set(train_split).intersection(set(valid_split))) == 0 ), "There should be 0 element that belongs to both train and valid" assert len(train_split) + len(valid_split) == len( train_data), "{:} + {:} vs {:}".format(len(train_split), len(valid_split), len(train_data)) search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split) search_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers, ) search_valid_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers, ) search_loader = torch.utils.data.DataLoader( search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None, ) # get configures model_config = load_config( args.model_config, { "class_num": class_num, "search_mode": args.search_shape }, logger, ) # obtain the model search_model = obtain_search_model(model_config) MAX_FLOP, param = get_model_infos(search_model, xshape) optim_config = load_config(args.optim_config, { "class_num": class_num, "FLOP": MAX_FLOP }, logger) logger.log("Model Information : {:}".format(search_model.get_message())) logger.log("MAX_FLOP = {:} M".format(MAX_FLOP)) logger.log("Params = {:} M".format(param)) logger.log("train_data : {:}".format(train_data)) logger.log("search-data: {:}".format(search_dataset)) logger.log("search_train_loader : {:} samples".format(len(train_split))) logger.log("search_valid_loader : {:} samples".format(len(valid_split))) base_optimizer, scheduler, criterion = get_optim_scheduler( search_model.base_parameters(), optim_config) arch_optimizer = torch.optim.Adam( search_model.arch_parameters(), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay, ) logger.log("base-optimizer : {:}".format(base_optimizer)) logger.log("arch-optimizer : {:}".format(arch_optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() # load checkpoint if last_info.exists() or (args.resume is not None and osp.isfile( args.resume)): # automatically resume from previous checkpoint if args.resume is not None and osp.isfile(args.resume): resume_path = Path(args.resume) elif last_info.exists(): resume_path = last_info else: raise ValueError("Something is wrong.") logger.log("=> loading checkpoint of the last-info '{:}' start".format( resume_path)) checkpoint = torch.load(resume_path) if "last_checkpoint" in checkpoint: last_checkpoint_path = checkpoint["last_checkpoint"] if not last_checkpoint_path.exists(): logger.log("Does not find {:}, try another path".format( last_checkpoint_path)) last_checkpoint_path = (resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name) assert (last_checkpoint_path.exists() ), "can not find the checkpoint from {:}".format( last_checkpoint_path) checkpoint = torch.load(last_checkpoint_path) start_epoch = checkpoint["epoch"] + 1 search_model.load_state_dict(checkpoint["search_model"]) scheduler.load_state_dict(checkpoint["scheduler"]) base_optimizer.load_state_dict(checkpoint["base_optimizer"]) arch_optimizer.load_state_dict(checkpoint["arch_optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] arch_genotypes = checkpoint["arch_genotypes"] discrepancies = checkpoint["discrepancies"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(resume_path, start_epoch)) else: logger.log( "=> do not find the last-info file : {:} or resume : {:}".format( last_info, args.resume)) start_epoch, valid_accuracies, arch_genotypes, discrepancies = ( 0, { "best": -1 }, {}, {}, ) # main procedure train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch * 1.0 / total_epoch) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}" .format( time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP, )) # train for one epoch train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func( search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, { "epoch-str": epoch_str, "FLOP-exp": MAX_FLOP * args.FLOP_ratio, "FLOP-weight": args.FLOP_weight, "FLOP-tolerant": MAX_FLOP * args.FLOP_tolerant, }, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}" .format( time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5, )) cur_FLOP, genotype = search_model.get_flop("genotype", model_config._asdict(), None) arch_genotypes[epoch] = genotype arch_genotypes["last"] = genotype logger.log("[{:}] genotype : {:}".format(epoch_str, genotype)) arch_info, discrepancy = search_model.get_arch_info() logger.log(arch_info) discrepancies[epoch] = discrepancy logger.log( "[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}" .format( epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy), )) # if cur_FLOP/MAX_FLOP > args.FLOP_ratio: # init_flop_weight = init_flop_weight * args.FLOP_decay # else: # init_flop_weight = init_flop_weight / args.FLOP_decay # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}" .format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], )) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 arch_genotypes["best"] = genotype find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}." .format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, )) # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "search_model": search_model.state_dict(), "scheduler": scheduler.state_dict(), "base_optimizer": base_optimizer.state_dict(), "arch_optimizer": arch_optimizer.state_dict(), "arch_genotypes": arch_genotypes, "discrepancies": discrepancies, }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("") logger.log("-" * 100) last_config_path = logger.path("log") / "seed-{:}-last.config".format( args.rand_seed) configure2str(arch_genotypes["last"], str(last_config_path)) logger.log("save the last config int {:} :\n{:}".format( last_config_path, arch_genotypes["last"])) best_arch, valid_acc = arch_genotypes["best"], valid_accuracies["best"] for key, config in arch_genotypes.items(): if key == "last": continue FLOP_ratio = config["estimated_FLOP"] / MAX_FLOP if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant: if valid_acc < valid_accuracies[key]: best_arch, valid_acc = config, valid_accuracies[key] print("Best-Arch : {:}\nRatio={:}, Valid-ACC={:}".format( best_arch, best_arch["estimated_FLOP"] / MAX_FLOP, valid_acc)) best_config_path = logger.path("log") / "seed-{:}-best.config".format( args.rand_seed) configure2str(best_arch, str(best_config_path)) logger.log("save the last config int {:} :\n{:}".format( best_config_path, best_arch)) logger.log("\n" + "-" * 200) logger.log( "Finish training/validation in {:}, and save final checkpoint into {:}" .format(convert_secs2time(epoch_time.sum, True), logger.path("info"))) logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True #torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) # prepare dataset train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) #train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) split_file_path = Path(args.split_path) assert split_file_path.exists(), '{:} does not exist'.format( split_file_path) split_info = torch.load(split_file_path) train_split, valid_split = split_info['train'], split_info['valid'] assert len( set(train_split).intersection(set(valid_split)) ) == 0, 'There should be 0 element that belongs to both train and valid' assert len(train_split) + len(valid_split) == len( train_data), '{:} + {:} vs {:}'.format(len(train_split), len(valid_split), len(train_data)) search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split) search_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers) search_valid_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers) search_loader = torch.utils.data.DataLoader(search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None) # get configures if args.ablation_num_select is None or args.ablation_num_select <= 0: model_config = load_config(args.model_config, { 'class_num': class_num, 'search_mode': 'shape' }, logger) else: model_config = load_config( args.model_config, { 'class_num': class_num, 'search_mode': 'ablation', 'num_random_select': args.ablation_num_select }, logger) # obtain the model search_model = obtain_search_model(model_config) MAX_FLOP, param = get_model_infos(search_model, xshape) optim_config = load_config(args.optim_config, { 'class_num': class_num, 'FLOP': MAX_FLOP }, logger) logger.log('Model Information : {:}'.format(search_model.get_message())) logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP)) logger.log('Params = {:} M'.format(param)) logger.log('train_data : {:}'.format(train_data)) logger.log('search-data: {:}'.format(search_dataset)) logger.log('search_train_loader : {:} samples'.format(len(train_split))) logger.log('search_valid_loader : {:} samples'.format(len(valid_split))) base_optimizer, scheduler, criterion = get_optim_scheduler( search_model.base_parameters(), optim_config) arch_optimizer = torch.optim.Adam(search_model.arch_parameters( optim_config.arch_LR), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay) logger.log('base-optimizer : {:}'.format(base_optimizer)) logger.log('arch-optimizer : {:}'.format(arch_optimizer)) logger.log('scheduler : {:}'.format(scheduler)) logger.log('criterion : {:}'.format(criterion)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() # load checkpoint if last_info.exists() or (args.resume is not None and osp.isfile( args.resume)): # automatically resume from previous checkpoint if args.resume is not None and osp.isfile(args.resume): resume_path = Path(args.resume) elif last_info.exists(): resume_path = last_info else: raise ValueError('Something is wrong.') logger.log("=> loading checkpoint of the last-info '{:}' start".format( resume_path)) checkpoint = torch.load(resume_path) if 'last_checkpoint' in checkpoint: last_checkpoint_path = checkpoint['last_checkpoint'] if not last_checkpoint_path.exists(): logger.log('Does not find {:}, try another path'.format( last_checkpoint_path)) last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name assert last_checkpoint_path.exists( ), 'can not find the checkpoint from {:}'.format( last_checkpoint_path) checkpoint = torch.load(last_checkpoint_path) start_epoch = checkpoint['epoch'] + 1 #for key, value in checkpoint['search_model'].items(): # print('K {:} = Shape={:}'.format(key, value.shape)) search_model.load_state_dict(checkpoint['search_model']) scheduler.load_state_dict(checkpoint['scheduler']) base_optimizer.load_state_dict(checkpoint['base_optimizer']) arch_optimizer.load_state_dict(checkpoint['arch_optimizer']) valid_accuracies = checkpoint['valid_accuracies'] arch_genotypes = checkpoint['arch_genotypes'] discrepancies = checkpoint['discrepancies'] max_bytes = checkpoint['max_bytes'] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(resume_path, start_epoch)) else: logger.log( "=> do not find the last-info file : {:} or resume : {:}".format( last_info, args.resume)) start_epoch, valid_accuracies, arch_genotypes, discrepancies, max_bytes = 0, { 'best': -1 }, {}, {}, {} # main procedure train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch * 1.0 / total_epoch) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( '\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}' .format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP)) # train for one epoch train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \ {'epoch-str' : epoch_str, 'FLOP-exp': MAX_FLOP * args.FLOP_ratio, 'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger) # log the results logger.log( '***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}' .format(time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5)) cur_FLOP, genotype = search_model.get_flop('genotype', model_config._asdict(), None) arch_genotypes[epoch] = genotype arch_genotypes['last'] = genotype logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype)) # save the configuration configure2str( genotype, str( logger.path('log') / 'seed-{:}-temp.config'.format(args.rand_seed))) arch_info, discrepancy = search_model.get_arch_info() logger.log(arch_info) discrepancies[epoch] = discrepancy logger.log( '[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}' .format(epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy))) #if cur_FLOP/MAX_FLOP > args.FLOP_ratio: # init_flop_weight = init_flop_weight * args.FLOP_decay #else: # init_flop_weight = init_flop_weight / args.FLOP_decay # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log('-' * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger) valid_accuracies[epoch] = valid_acc1 logger.log( '***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}' .format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100 - valid_accuracies['best'])) if valid_acc1 > valid_accuracies['best']: valid_accuracies['best'] = valid_acc1 arch_genotypes['best'] = genotype find_best = True logger.log( 'Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.' .format(epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path)) # log the GPU memory usage #num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0 num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device) * 1.0 logger.log( '[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]' .format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9)) max_bytes[epoch] = num_bytes # save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'max_bytes': deepcopy(max_bytes), 'valid_accuracies': deepcopy(valid_accuracies), 'model-config': model_config._asdict(), 'optim-config': optim_config._asdict(), 'search_model': search_model.state_dict(), 'scheduler': scheduler.state_dict(), 'base_optimizer': base_optimizer.state_dict(), 'arch_optimizer': arch_optimizer.state_dict(), 'arch_genotypes': arch_genotypes, 'discrepancies': discrepancies, }, model_base_path, logger) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('') logger.log('-' * 100) last_config_path = logger.path('log') / 'seed-{:}-last.config'.format( args.rand_seed) configure2str(arch_genotypes['last'], str(last_config_path)) logger.log('save the last config int {:} :\n{:}'.format( last_config_path, arch_genotypes['last'])) best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best'] for key, config in arch_genotypes.items(): if key == 'last': continue FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant: if valid_acc <= valid_accuracies[key]: best_arch, valid_acc = config, valid_accuracies[key] print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format( best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc)) best_config_path = logger.path('log') / 'seed-{:}-best.config'.format( args.rand_seed) configure2str(best_arch, str(best_config_path)) logger.log('save the last config int {:} :\n{:}'.format( best_config_path, best_arch)) logger.log('\n' + '-' * 200) logger.log( 'Finish training/validation in {:} with Max-GPU-Memory of {:.2f} GB, and save final checkpoint into {:}' .format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e9, logger.path('info'))) logger.close()