def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"): r""" Dimension of the new subspace (or `p`-new subspace) of cusp forms of weight `k` and character `\varepsilon`. INPUT: - ``k`` - an integer (default: 2) - ``eps`` - a Dirichlet character - ``p`` - a prime (default: 0); just the `p`-new subspace if given - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Moebius inversion using the subgroups GammaH (a method due to Jordi Quer). EXAMPLES:: sage: G = DirichletGroup(9) sage: eps = G.0^3 sage: eps.conductor() 3 sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0] sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Double check using modular symbols (independent calculation):: sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Another example at level 33:: sage: G = DirichletGroup(33) sage: eps = G.1 sage: eps.conductor() 11 sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]] [2, 0, 6] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]] [2, 0, 6] """ if eps == None: return GammaH_class.dimension_new_cusp_forms(self, k, p) N = self.level() eps = DirichletGroup(N)(eps) from all import Gamma0 if eps.is_trivial(): return Gamma0(N).dimension_new_cusp_forms(k, p) from congroup_gammaH import mumu if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p): D = [eps.conductor()*d for d in divisors(N//eps.conductor())] return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D]) eps_p = eps.restrict(N//p) old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm) return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"): r""" Dimension of the new subspace (or `p`-new subspace) of cusp forms of weight `k` and character `\varepsilon`. INPUT: - ``k`` - an integer (default: 2) - ``eps`` - a Dirichlet character - ``p`` - a prime (default: 0); just the `p`-new subspace if given - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This specifies the method to use in the case of nontrivial character: either the Cohen--Oesterle formula as described in Stein's book, or by Moebius inversion using the subgroups GammaH (a method due to Jordi Quer). EXAMPLES:: sage: G = DirichletGroup(9) sage: eps = G.0^3 sage: eps.conductor() 3 sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]] [0, 0, 0, 2, 0, 4, 0, 6, 0] sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Double check using modular symbols (independent calculation):: sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]] [0, 0, 0, 2, 0, 2, 0, 2, 0] Another example at level 33:: sage: G = DirichletGroup(33) sage: eps = G.1 sage: eps.conductor() 11 sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]] [0, 4, 0] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]] [2, 0, 6] sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]] [2, 0, 6] """ if eps == None: return GammaH_class.dimension_new_cusp_forms(self, k, p) N = self.level() eps = DirichletGroup(N)(eps) from all import Gamma0 if eps.is_trivial(): return Gamma0(N).dimension_new_cusp_forms(k, p) from congroup_gammaH import mumu if p == 0 or N % p != 0 or eps.conductor().valuation(p) == N.valuation( p): D = [eps.conductor() * d for d in divisors(N // eps.conductor())] return sum([ Gamma1_constructor(M).dimension_cusp_forms( k, eps.restrict(M), algorithm) * mumu(N // M) for M in D ]) eps_p = eps.restrict(N // p) old = Gamma1_constructor(N // p).dimension_cusp_forms( k, eps_p, algorithm) return self.dimension_cusp_forms(k, eps, algorithm) - 2 * old