def parseCOMM(raw): # TODO enc = raw[0:1] lang = raw[1:4] desc = decode(enc, raw[4:]) i = raw[4:].index(terminator(enc)) + len(terminator(enc)) cont = decode(enc, raw[i:]) return {"raw": raw, "language": lang, "description": desc, "content": cont}
def codes_to_str(self, codes): return decode(codes)
def code_to_char(self, code): return decode([code])
dl.test_label_data[i] == np.amax(dl.test_label_data[i])) max_index_prediction = np.where( predictions[i] == np.amax(predictions[i])) counter = 0 if (max_index_label[0][0] == max_index_prediction[0][0]): if (accuracy_counter == 0): counter = counter + 1 color = green_color else: color = red_color cell = sheet.cell(column=1, row=row_num, value=const.decode(max_index_label[0][0])) cell.fill = color cell.border = thin_border cell = sheet.cell(column=2, row=row_num, value=const.decode(max_index_prediction[0][0])) cell.fill = color cell.border = thin_border for j in range(len(layer_model_prediction[i])): cell = sheet.cell(column=3 + j, row=row_num, value=layer_model_prediction[i][j]) if (layer_model_prediction[i][j] > const.ACCTIVATION_BOUNDARY): if (max_index_label[0][0] == max_index_prediction[0][0]): color = green_color_strong else:
def parseT000(raw): # Text encoding $xx # Information <text string according to encoding> enc = raw[0] dec = decode(enc, raw[1:]) return {"content": dec}