예제 #1
0
	def testStatsList(self):
		us = UserStats('userid', 'itemid')
		us.save(1,2)
		us.save(1,3)
		us.save(1,4)

		us.save(2,2)
		us.save(2,3)
		us.save(3,4)
		us.save(4,4)

		toplist = us.get_Top_N('userid', 3)
		print toplist
		self.assertEqual(len(toplist), 3, "toplist has not enough entries")
		toplist = us.get_Top_N('userid', 4)
		self.assertEqual(len(toplist), 4, "toplist has not enough entries")
		self.assertEqual(int(toplist[0][0]), 1, "")
		self.assertEqual(int(toplist[0][1]), 3, "")
예제 #2
0
                timestamp = message['timestamp']
                domainid = message['domainid']

                additional_filter = {'domainid': domainid}

                if config_global.SAVE_RANDOM_RECOMMENDER in backends:
                    fb = Random_Recommender()
                    fb.set_recommendables(itemid, additional_filter)

                if config_global.SAVE_HADOOP_SINK in backends:
                    hS = HadoopSink(append=True)
                    rating = 1
                    hS.save_mode2(userid, itemid, domainid, timestamp)

                if config_global.SAVE_USER_STATS in backends:
                    us = UserStats('userid', 'itemid')
                    us.save(userid, itemid)

                    #save sync
        else:
            body_message = {'message': message,
                            'api': api,
                            'backends': backends}

            body_message = pickle.dumps(body_message)

            self.enqueue(body_message)
            #from contest.packages.queues.RawJsonDumpWorker import rawJsonDumpWorker
            #raw = rawJsonDumpWorker(mode='redis')
            #raw.enqueue(message)
예제 #3
0
			if (SAVE_DIMENSION_LIST):
				dimension = 'user_ids'
				dL = DimensionListModel( dimension )
				if(debug):
					print "userid:\t" + str(flattenedJson['client_id'])
				dL.save( dimension_id = flattenedJson['client_id'], timestamp = timestamp_sec )
			"""
			
			
			n += 1
			if ( n % cycle_count == 0 and debug2):
				print n
		
		if (not debug3):		
			result = r.fetch_row(maxrows = n_maxrows) # fetch N row maximum
		else: result = False
		
					
	if (not debug3): db.close() #close the database connection
	replay_time = time2.time() - replay_time
	
	print "time it took: " + str(replay_time)
	print 'It took {0:1f} seconds per item'.format(replay_time/n)

	us = UserStats('userid', 'itemid')

	the_list = us.get_Top_N('userid', 100)
	print the_list
	pH = Plot_Helper()
	pH.make_plot(the_list)